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Summary. — We have investigated the possibility of obtaining the fourth-
rank orientational order parameter {(P,) for a rodlike probe molecule
dissolved in a liquid crystal from a time-dependent fluorescence
depolarization experiment. Simulated data at various temperatures have
been prepared and then analysed both individually and simultaneously using
the previously proposed «global target» deconvolution approach. We have
examined, in particular, the case of a pure P,(cosB) effective potential.
Approximate solutions of the diffusion equation recently put forward in the
literature have also been tested.

PACS 61.30 — Liquid crystals.

PACS 64.70 — Phase equilibria, phase transitions and critical points of
specific substances.

PACS 87.30 — Biophysics of neurophysiological processes (excluding percep-
tion processes and speech).

1. - Introduction.

A particularly appealing characteristic of the fluorescence depolarization
technique is that of being able to provide, at least in principle, not only second-

(*) To speed up publication, the authors of this paper have agreed to not receive the
proofs for correction.

(**) Work presented at the First USSR-Italy Bilateral Meeting on Liquid Crystals held
in Portonovo, Ancona (Italia), September 30-October 2, 1987.






elsewhere (). Here we just wish to recall the bare minimum necessary to
establish notation and to prepare the ground for the data analysis section. We
start by defining the geometry of the experiment as having the uniformly aligned
liquid-crystal sample placed at the origin. We assume the Z-axis parallel to this
monodomain preferred orientation (the director) and the exciting light to be
coming along the laboratory Y direction with polarization direction e;. The
fluorescent probe has effective cylyndrical symmetry, i.e. we assume that its
ordering matrix cannot be distinguished from a truly uniaxial one. The transition
moments « and @ can possibly be tilted away from the effective symmetry axis
with Cartesian components

(1) ®= |1’"|(0, 07 COS,Ba) )
2 i = |@|(sing,, cos a,sing, sina,, cos ),

where 3,, a., 8. give the transition moments orientation in the molecule fixed
frame. The dye concentration is assumed to be so low that probe-probe
intermolecular relaxation effects can be neglected and the pulse intensity to be
weak enough to avoid saturation effects (¥). Fluorescence light is observed in the
forward or in the right angle direction through an analyser, set at a direction of
polarization e;. The theory can of course be adapted with straightforward
modifications to any other observation geometry. The relevant fluorescence
intensities at a time ¢ after an instantaneous excitation pulse can be written,
when reorientation is the dominant depolarization mechanism and the
fluorescence and reorientation processes are statistically independent, as

®)  LuOF =3 +2 (P)[Pacossy) + Palcosg)] +

+ 43 D2 0500 Do 0 8,

@  Lx@F@®= % + % (P3)[2P;(cos B) — P(cos B)] —

—Z 5 D% 08.0) Dot 0 30n ),

where DL, (2 87) is a Wigner rotation matrix (°) and the second-rank orientational
correlation functions ¢,,(f), defined as an average over the molecular
orientations wy, w, at time zero and a time f,

(5) ¢qn (t) = <D§n (wO) quﬁ (wt)> 3

(® K. RAz1-NAQvI: J. Chem. Phys., 73, 3019 (1980).
() M. E. RosE: Elementary Theory of Angular Momentum (Wiley, New York, N. Y.,
1957).



describe the rotational dynamics of the probe. We shall also employ the
fluorescence anisotropy ratio

I72(8) — Izx (1)
6 r)=——Fr—r.
©) ® Izz(8) + 215 (D)
When a probe has effective cylindrical symmetry, the order parameters that can
be obtained are at the most (P;) and (P;). Thus the most general singlet
orientational distribution f(8) we can infer from such an experiment has,
according to maximum entropy principles (), the form (%)

¢ f(B)=explay+ a; Py(cosB) + as Py(cosB)],

where a, is determined from the normalization condition of f(3) and at each
temperature a;, a4 should give back the experimental (P,), (P,).

In practice what is actually observed is a set of intensities and we will try to
fit them to a theoretical model based on the distribution in eq. (7). In particular,
the computation of theoretical intensities is based on assuming a rotational
diffusion model for the reorientation of the molecules in the anisotropic potential

&) = Uprobe ()T = a3 Py(cos 8) + a4 Py(cosB).

Thus a rotational diffusion equation can be set up in the usual way (**) and
orientational autocorrelation functions can be calculated. No additional
approximation is really needed. However, various authors (****) then proceed to a
drastic approximation of the orientational autocorrelation functions, writing
them in terms of their first few time derivatives. It is not clear, in general, if
additional errors are introduced in this way and what they amount to. In the
appendix we shall examine this point. In the rest of this paper we shall always
use the full numerical solution.
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3. — Preparation of temperature-dependent simulated data.

The question of the amount of molecular information obtainable is in general
not an easy one to answer and is complicated by deconvolution. In ref. (*'°) we
have approached the problem using a simulation technique. The general idea is
to prepare theoretical intensity curves using egs. (3), (4) we have seen earlier
and an assumed instrument function. Then Poisson noise to a predetermined
level is added. The data obtained in this way are treated as true experimental
data and analysed to see if the molecular parameters can be recovered for those
simulated conditions. We are also interested in exploring the possible
advantages of the global target analysis (GTA) procedure () where data from
different temperatures are simultaneously analysed. Thus we have first devised
a way of preparing a set of plausible simulated data at various temperatures. To
this end we have assumed that the probe is experiencing rotational diffusion in
an effective potential as given by the Humphries-James-Luckhurst molecular
field theory for second- and fourth-rank interactions between solute and
solvent (*®®). This P, — P, potential is

(9) - Uprobe(.g) = u2 <P2>solvP2(COS.B)A+ U/4 <P4>solvP4(COS.B) ’

where u,, u, are solute-solvent interaction coefficients and (Py) are pure
solvent order parameters. The pure solvent order parameters are in turn
obtained assuming that a Humpries-James-Luckhurst (') mean field applies to
the pure nematic, t.e.

(10) - Usolv(.B) = CZ[<P2>SOIVP2(COS,B) + )\solv <P4>solvP4(COS,3)] 3

where ¢, is a solvent-solvent interaction energy and 2., is the ratio between the
fourth-rank and second-rank interaction coefficients. The solvent order
parameter {Ps)ww, {Pi)wy obey self-consistency equations and follow from
mean field theory. They are defined at a certain temperature T when a nematic-
isotropic transition temperature Ty, is assigned. As a special case the Maier-
Saupe solvent potential is obtained when iy, = 0. The perpendicular component
of the diffusion tensor D, at the various temperatures has been assumed to
follow an Arrhenius-type behaviour (%)

1n D (T)=D%expl—- E./RT],

(¥) A. ARCIONI, R. TARRONI and C. ZANNONL: New Developments in Polarized
Spectroscopy of Ordered Systems, edited by B. SaMORI and E. THULSTRUP (Reidel,
1988).

(") R. L. HuMPHRIES, P. G. JAMES and G. R. LUCKHURST: J. Chem. Soc. Faraday
Trans. 11, 68, 1031 (1972).

(*) G. R. LUCKHURST and M. SETAKA: Mol. Cryst. Lig. Cryst., 19, 279 (1973).



where E, is an activation energy. An extensive set of simulations and analysis
has been performed and will be reported in the next section. We shall use the
Maier-Saupe limit for the solvent potential, although the full form eq. (10) will be
used in the analysis. We have convoluted the theoretical intensities I;; with
instrumental function as described in (**®). The pulse function employed is (%)

(12) P{t)=at®exp[— ]

with a determining the count level. Typical count levels used for I, + 21, were
between 30 kcounts and 80 kcounts at the peak level, i.e. in a range of values
obtainable with an ordinary single-photon apparatus. We consider intensity
histograms over 256 channels with a width of 0.1ns. We also include scattered
light, as a fraction of the pulse, on the parallel (10%) and on the perpendicular
channel (1%) and a time shift of 0.1ns. We have considered rodlike probes
dissolved in an oriented phase made up of elongated particles and a few typical
transition moment geometries. The fluorescence of the probe is assumed to
decay exponentially with a fluorescence time 7y = 6ns.

4, — Data analysis.
We have employed four different strategies

4'1. Individual target analysis (ITA) for each temperature. — This is the most
straightforward procedure. It consists in analysing each temperature on its own.
We have called target analysis the procedure of doing deconvolution not to a sum
of free exponentials but rather to the parameters in in the model employed (here
the diffusional one) *®). Target analysis (°) is performed on each set of data to
determine in particular a,(T"), a,(T') in eq. (8) and D, (T'). We also employ the
results of this analysis as a guideline for starting the global procedures described
in what follows.

4'2. Diffusion tensor globalization (DTGA). — We have also performed a
diffusion tensor globalization by assuming an Arrhenius-type law for the
component of the probe rotational diffusion tensor D perpendicular to the long
axis in(*). Thus we still determine a,(T'), a,(T') and we optimize D% and the
activation energy E, in an equation like eq. (11). Here we have only used a
special case of the model with a,=0.

(*) A. Mc KINNON, A. G. SzaBo and D. R. MILLER: J. Phys. Chem., 81, 1564 (1977).
(*) C. ZANNONL: Theory of Fluorescence Polarization Awisotropy, in NATO-ASI on
Excited State Probes in Biochemistry and Biology, Acireale, 1984, directed by A. G.
SzABO and L. MASOTTI.



4'3. Humphries-James-Luckhurst globalization. — This is a global fit to the
Humphries-James-Luckhurst (HJL) parameters ualk, ualk, dsyy in eqs. (9), (10)
and to D and E, as before. In principle, it is just a check more than anything
else, since we have constructed the data using these very equations, so that we
should have az = s (Ps)eo/kT, @y =ty (Ps)sw/kT. In practice, however, it is a
useful test of the feasibility of the complex nonlinear fit problem we have set up.

4'4. Parabolic global target analysis. — In many practical situations a
reasonable theoretical expression for fitting the relative fourth-rank and second-
rank contributions will not be known. Thus the only alternative would seem to
perform individual analysis or at most a diffusion tensor globalization. On the
other hand, we believe we still have some information on the behaviour of a,, a,
in eq. (7) or equivalently of the probe order parameter (P), {Py4) as a function of
temperature. In particular, we believe that, within the nematic or the isotropic
phase, they will fall on a continuous and differentiable curve, and possibly a
smooth one. Obviously we know nothing, a priori, on this dependence. On the
other hand, analysing the various temperature results independently would not
implement the simple but important mathematical constraints we just
mentioned. A possible approach is to assume an empirical form for a,(T') which is
flexible enough to accommodate every realistic variation that can take place in
the data. The simplest choice is to take a simple polynomial or truncated Taylor
expansion starting from the lowest temperature T\, . Thus we have assumed a
simple quadratic dependence for the temperature variation of a,

(13) as(T) = 20+ 2(T = Tin) + 3o (T = Toin)?,

where A, A1, Az are to be determined globally. Notice that no particular physical
significance is attached at the moment to the coefficients. We emphasize that the
aim is to introduce the requisite of the order parameters as a function of
temperature as a means of connecting measurements at different temperatures.
In this approach the parameter a»(T') is individually determined, while D, is
globalized as in 4°2.

5. — Results.

5'1. P, potential. — The first example we consider is that of a probe subject to
a pure P, probe potential (u,/k = 1800K, u,/k =0K in eq. (9)) with the solvent
potential U, itself being of the Maier-Saupe type (A =0). A count level
parameter a = 30000 (cf. eq. (12)) has been used. We have considered the case of
absorption and emission moments parallel or tilted with respect to the long axis
and we have prepared simulated intensities at ten temperatures regularly
spaced between 60°C and the nematic-isotropic transition temperature 150°C.
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Fig. 1. — Simulated anisotropies #(¢) for a rodlike probe in a P, potential (eq. (9) with
coefficients u,/k = 1800K, u,/k=0K) in a uniaxial nematic with effective potential,
eq. (10) and Ty =150°C. Here D% =800ns"! and E,=381.4kJ/mol. The curves are
calculated for transition moments u and z parallel to the long molecular axis (continuous
line) or tilted 20° (dashed line) at temperatures T = 60.0°C (a)) and T = 150.0°C (). Time
channel widths is 0.1ns.

The same temperature grid has been used in all cases treated in this paper. In
fig. 1 we show the theoretical anisotropy ratio »(t), eq. (6) at the lowest and
highest temperature studied, both for transition moments parallel to the rod axis
(continuous line) and for the case of moments parallel to each other but tilted 20°
from the molecule axis, to be examined later. We analyzed the data with the
P, — P, model, with the aim of seeing if the procedure employed can detect the
absence of a fourth-rank term or if the fitting will incorrectly adapt to a nonzero
value of the fourth-rank contribution.

In fig. 2 we summarize the results of the different analyses as follows. First
we report at the top the input values of (P,) and (P,) (fig. 2a)) and of D, (fig.
2¢)) and their temperature dependence. Then we try to visualize the
performance of the different data analysis strategies by showing for each one the
error in the observables as the difference between the recovered and the input
and data. Thus we have the error obtained on (P,) (open symbols) and (P,) (full
symbols) (fig. 2b)) and on D, (fig. 2f)) by analysing each temperature
independently. Similarly in fig. 2¢), ¢) we show the errors obtained when
performing a parabolic global target analysis as described in subsect. 4°'4. Finally
fig. 2d), k) show the residuals corresponding to the HIL global target analysis in
subsect. 4'3. We see that this procedure recovers the input data extremely well,
showing that the problem can be tackled from a numerical point of view when the
true relation existing among the data is correctly guessed. We also notice that
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Fig. 2. — Results of a P, — P, analysis of the fluorescence intensities corresponding to a
pure P, potential. The input values for the second- and fourth-rank probe order
parameters {P,), (P,) and for the rotational diffusion coefficient D, data are given as the
crosses in ((fig. 2a), €)). The continuous lines help to see the full temperature dependence.
The symbols correspond to the difference A between recovered and exact results for (Py)
(empty circles), {P,) (full circles) and for D, (squares) when analysing with individual
target analysis (fig. 2b), f)), parabolic global target analysis (fig. 2¢), ¢) and with HJL.
global target analysis (fig. 2d), ~)). The probe transition moments are parallel to the long
axis.

(P,) is always secured quite well for the present conditions. On the other hand,
(P,) and D, are more accurately obtained when a parabolic global target
analysis is used. In this case the fourth-rank contribution is also correctly found
to be vanishingly small, i.e. within no more than 2% of the second-rank one.

We have also investigated the case of the transition moments being both tilted
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off from the long axis of an angle 6 of 20 degrees () and we show the results in
fig. 3,4. In this case the analysis is complicated by the fact that reorientation
about the long axis modulates the fluorescence depolarization. This in turn
implies (cf. eqs. (3), (4)) that correlation functions ¢g; (f), ¢¢2(f) and the component
of the rotational diffusion tensor parallel to the rod axis, Dy, will affect the
intensities. It is interesting to see first if we get an indication that new
parameters have to be added by analysing the data in a straightforward manner.
Thus we started with an individual analysis in terms of a P, model with
transition moments parallel to the rod axis. The reduced chi square x2 is quite
high, varying typically between 1.2 and 1.7, and does suggest the need of a more
detailed model. Introduction of 6 and D,, or rather the ratio n=D,/D, as
parameters in the P, model gives a better fit but rather large errors (fig. 3a), ¢);
4a)) for all the observables. Globalization of D, with eq. (11) gives better overall
agreement with the input data, as shown in (fig. 8b), d); 4b)). Notice that, if the
ITA is repeated with a P,P, model, and the moments fixed parallel to z, a
relatively good »2 is obtained, but the parameters recovered are poor. In
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Fig. 8. — Results of the analysis of the fluorescence intensities corresponding to a probe
with w2z and tilted 20° from the rod axis reorienting in a pure P, potential. (Py), (P,),
D, and symbol meanings as in fig. 2, while the full squares in fig. 3¢), d) correspond to the
rotational diffusion component ratio » = D,/D, . We show results for ITA (fig. 3a), ¢)) and
for parabolic GT analysis (fig. 3b), d)). Here n=10.
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Fig. 4. — Errors in recovering the tilt angle 6 (degrees) of the transition moments with
respect to the long axis for the case in fig. 3. We show results for ITA (a)) and parabolic {
GT analysis (b)). :
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Fig. 6. — Simulated anisotropies 7(t) for a rodlike probe with transition moments parallel
to the long axis in a P, — P, potential, eq. (9), with coefficients us/k = 800 K, u,/k = 800 K
in a uniaxial nematic with effective potential, eq. (10), and Ty, =150°C. Curves a)-))
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and E, = 31.4kJ/mol.
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particular, the order parameters (P,) and (P,) are systematically
underestimated with (P,) going from 0.2 at the lowest temperature to slightly
negative. Thus we conclude that an independent determination of the transition
moments is highly recommended if reliable values of the order parameters have
to be recovered.
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Fig. 7. — Results of an analysis of the fluorescence intensities corresponding to a P, — P,
potential as in fig. 6 (continuous lines). The notation for the symbols is the same as in fig.
2. The values obtained with ITA for A(P,) and A D, at the highest temperature, i.¢. 0.176
and 0.384ns™!, are out of scale in fig. 7b), f).

5°2. P, — P, potential. — We now consider a case in which the solute-solvent
potential Upere(B8) in eq. (9) has both a second-rank and a fourth-rank
contributions. The effect of the P, term is to make the potential more anisotropic
and peaked at 5=0 if u, is positive.



When u, is negative, the effect is generally of making the potential less
anisotropic, but the combination of the second- and fourth-rank term can also
lead to an off axis minimum. Here we have treated both the case of positive and
negative u, with u, and u, of equal absolute value. The effective potential acting
on the probe is quite different in these two cases, as shown in fig. 5. The first
type of potential examined is that with u./k = u,/k = 800 K (continuous line in fig.
5). The fluorescence intensities have been calculated as before and lead to
anisotropy ratios plotted in fig. 6 for the same set of temperatures used before.

The values of the order parameters and D, corresponding to these
anisotropies are reported in fig. 7a), ¢). This combination of solute-solvent
interaction leads to positive (P,) and (P,), but with a temperature dependence
less downward concave than usual. In the same figure we also give, in the same
format used previously, a comparison of the various kinds of analysis performed.
The nonlinear fit to the HJL expression used works very well and the parabolic
GTA always performs better than the individual one. In particular the individual
analysis in fig. 7b), f) show a strong correlation between (P,) and D, . Some of
the values obtained with the more straightforward ITA are quite wrong. The
highest-temperature results, in particular, are out of scale in our plot.

We now move to studying the potential in fig. 5 with up/k = — u,/k =800 K.
This is a relatively more difficult case, since curves corresponding to rather
different values of the order parameters are more similar than the previous ones,
as we see from the anisotropies in fig. 8.

In fig. 9 we show once more the results of an analysis of these simulated data
(continuous lines) using individual temperature analysis and global target
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Fig. 8. — Simulated anisotropies for a rodlike probe with transition moments parallel to
the long axis in a P, — P, potential, eq. (9), with coefficients u,/k = 800K, u/k = — 800K
in a uniaxial nematic with effective potential, eq. (10), and Ty;=150°C. Here
D° =800ns~! and E,=31.4kJ/mol. The labelling of the curves is the same of fig. 6.
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Fig. 9. — Results of the analyses of the fluorescence intensities corresponding to a P, — P,
potential as in fig. 8 (continuous lines). The notation for the symbols is the same as in
fig. 7.

analysis. As usual we have the temperature dependence of the second-rank and
fourth-rank order parameters. We notice that (P,) exhibits a rather weak
temperature dependence and that it is negative in the whole range. All the three
analyses shown are quite effective in recovering both order parameters and
diffusion coefficient.

53. P, potential. — The limiting case of an effective potential where the P,
contribution is the largest one is that of a pure P, interaction. This model was
first studied some years ago using molecular field theory (*) and more recently

(*) C. ZANNONL: Mol. Cryst. Liq. Cryst. Lett., 49, 247 (1979).
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using two-site cluster theory and Monte Carlo simulations (¥). One of the most
peculiar findings was that there should exist a temperature interval where the
fourth-rank order parameter is bigger than the second-rank cne. Various groups
have found this behaviour in agreement with fluorescence anisotropy data
obtained for 1,6-diphenylhexatriene in DPPC and DMPC membrane
vesicles (*15%), Here we consider the probe effective potential as yet another
case of eq. (9), this time with uz/k = 0K, u,/k = 4000 K. The anisotropic solvent
pseudopotential is instead assumed to be described by an ordinary second-rank
potential, eq. (10) and Ay =0. Moreover, we consider transition moments
parallel to the long axis and D9, E, as given in the caption to fig. 10. In fig. 10 we
show the time-dependent anisotropies at the usual series of temperatures.
The order parameters of this solute-solvent interaction are quite interesting.
They show (P,) bigger than (P,) in the whole temperature range and that (Ps)
vs. temperature has the unusual characteristic of being upward concave. The
intensities have been analysed first with a pure P; model and it is gratifying to
verify that with this incorrect choice of probe potential completely unacceptable
values of 2 (up to 50) are obtained. An individual target analysis with the P, P,
model gives good % and finds the ratio a/a,, which should strictly be zero, to
less than 5%. Following this a parabolic GTA analysis has given generally good
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Fig. 10. — Simulated anisotropies for a rodlike probe with transition moments parallel to
the long axis probe in a P, potential, eq. (9), with coefficients uy/k = 0K, u,/k = 4000K in
a uniaxial nematic with effective potential, eq. (10), and Ty, =150°C. Curves a)-j)
correspond to temperatures T from 60°C to 150°C in steps of 10°C. Here D¢ = 4000ns™"
and E,=31.4kJ/mol.

(® F. BISCARINI, C. CHIccoLI, P. PASINI and C. ZANNONIL: to be published.
(®) H. PoTTEL, W. HERREMAN, B. W. VAN DER MEER and M. AMELOOT: Chem. Phys.,
102, 37 (1986).
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at least for rodlike probes and monodomain samples. However, it is important
that the deconvolution procedure is appropriate. Although the more
straightforward technique of analysing each temperature individually (ITA) may
be more intuitive and seemingly less biased, this approach is normally inferior to
a global target analysis. A good knowledge of the transition moments is also
nearly essential. Thus, at this stage, it might be better to concentrate efforts on
a few selected reporter molecules, which have a relatively low uncertainty on the
orientation of the absorption and emission moments.

* %k &

We are grateful to Min. P.I. and C.N.R. for support toward the maintenance
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used in this work.

APPENDIX

Here we wish to briefly compare the results of a numerical («exact»)
calculation of the rotational diffusion orientational autocorrelation functions with
those obtained from an approximate form in the literature (***). We have chosen
to present for the comparison only one of the second-rank correlation times t,.,,
defined as

(14) tn= | AL (®) = (P2)28008u),

i.e. the long axis correlation time 7y . We recall that this is the only relevant
correlation time when both transition moments are parallel to the rod axis. In
fig. 12 we show the correlation time generated by the complete numerical
solution of the diffusion equation (continuous line) and the approximate ones
(dashed lines) (*) for positive order parameters and for the P, — P, potential in
eq. (8). We show results for the pure P, potential limit (curve A in fig. 12a))
where the approximation works quite well and for a few cases with a
nonvanishing P, contribution. While the agreement between the approximate
curves is also good for a,/a, = — 0.5, we see that, for a positive P, contribution,
a4/as = 0.5 (curve C in fig. 12a)) the agreement worsens. In fig. 12 we show that
the approximate expression actually diverges from the correct one when the
effective potential acting on the probe is of the pure P, type (notice also the
different scale on the ordinate). This is due to the double well character of a
potential of this kind, which brings, in the limit of very high barrier, a second
eigenvalue of the diffusion equation to zero and the corresponding correlation
time to diverge. The introduction of a n-fold barrier potential in the diffusion
equation leads in general to n zero eigenvalues (*).

Thus, although in a number of circumstances and particularly for a P, model,
the approximate expressions work fairly well, we conclude that using them to

(*) G. Moro and P. L. Norpio: Mol. Phys., 56, 255 (1985).
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Fig. 11. — Results of the analyses of the fluorescence intensities corresponding to a P,
potential as in fig. 10 (continuous lines). The notation for the symbols is the same as in

fig. 9. The highest temperature value for AD, as found from ITA is — 0.084.

results for D, and the order parameters, except at the lowest temperatures
used (cf. fig. 11c)). The parameters in eq. (12) are 1, = — 4.4085, 2; =0.03201,
22 =0.00004 showing that a parabolic interpolation is more than sufficient to
allow for the a,(T') dependence. The reason for the higher error in this case is
probably due to unfavourable fluorescence to reorientation decay range since, as
we see from fig. 10, the anisotropy is not fully decayed at the lowest
temperature.

6. — Conclusions.

The main conclusion we can draw is that, even though (P,) is normally
recovered better than anything else, (P,) should also be practically obtainable
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Fig. 12. — A comparison of exact (continuous lines) and approximate () rod axis

correlation time 7y, for various P, — P, potentials, eq. (8), as a function of the second-rank
order parameter (P,). We show in fig. 12a) results for as/a,=0(4), a/a,=0.5(B),
a4/t =0.5(C). In fig. 12b) we show the pure P, limit results.

analyse experimental data can be dangerous and is not recommended. Indeed it
is important that no additional errors are introduced in that case. In particular,
since in the approximate expressions (see, e.g.,(*)) an explicit dependence on
(P,) is given, a value for (P,) is always going to be obtained, even in situations
where, maybe, this cannot be reliably done.

® RIASSUNTO

In questo lavoro abbiamo studiato la possibilita di ricavare da un esperimento di depo-
larizzazione di fluorescenza dipendente dal tempo il parametro d’ordine orientazionale di
rango quattro (P,) per una molecola sonda rodlike disciolta in concentrazione opportuna
in un cristallo liquido. A questo scopo sono stati preparati dati simulati a varie
temperature, poi analizzati sia individualmente sia simultaneamente usando per la
deconvoluzione Papproccio «global target» proposto in precedenza. In particolare & stato
esaminato il caso di un potenziale effettivo di tipo P4(cos ). Sono stati inoltre determinati
i limiti di validita di aleune soluzioni approssimate dell’'equazione diffusionale
recentemente apparse in letteratura.

Moxkuo jn noiaywats (P,) u3 Jenonspusanuu (hayopecueHnud B KUIKHX KpHCTAMLIax?
1. Crepxune-nono6HbIe NATYMKH.

Pe3ziome (). — B oTolt paGore HcCIedyeTCsi BO3MOXKHOCTE IIONyYeHHs NapaMeTpa
OPMEHTALOHHOTO TOPSA/KA YETBEPTOrO paHra {Ps) mns MOJEKyibl NPENCTaBIAIOLIEH
CTepXHe-TONOGHBIA 30HN, KOTOpas pacTBOPEHa B XKHJIKOM KpUCTallle, HCTOIb3Ys
SKCHEPHMEHT MO AeHOIApH3alyi  (hIyOPECUCHIMH B 3aBUCHMOCTM  OT BDEMCHH.
[TOAroTOBNe Ll NAHHbIC MONCIAPOBAHMS [PH PA3NMUHBIX TeMIeparypax. 3aTem 3T
NAaHHbIE AHAJIM3HPYIOTCA, MCIIONB3Ys paHee MNpPEIOXKEHHBIA NOxXon «[nmo6anbHast
MHUIIEHE». B 4aCTHOCTH, MBI HCCIIenyeM cinydail 9¢peKTUBHOro MOTEHIMAIA THIIA P,(cosp).
Onpenenerbl Npefebl IPUMEHUMOCTH HEKOTOPBIX NPHONMKEHHBIX pellleHUH YPaBHEHHA
nupdyaur, KOTOPhIE HENABHO MOABUIKCH B NMTEPATYypE.

(*) Hepesederno peoaxiyueli.



