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Nematics with Quenched Disorder: What Is Left when Long Range Order Is Disrupted?
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It is now generally accepted that even low amounts of quenched disorder disrupt long-range order
in anisotropic systems with continuous symmetry. However, very little is known on the key item of
the nature of the residual order, if any, and particularly if this has quasi-long-range or truly-short-range
character. Here we address this problem both experimentally for the nematic 6CB in dilute aerosils
and with computer simulations. We find that the residual order is short ranged and scales with disorder
density in agreement with the Imry-Ma argument.

PACS numbers: 61.30.Cz, 61.30.Gd, 64.70.Md
The effects of quenched random disorder are of funda-
mental interest for many areas of soft condensed matter
[1–4] including superfluids [5], random magnets [6],
elastomers [7], and liquid crystals [8,9]. Quenched disor-
der has also important effects on relaxations, yielding a
slow, glass type, dynamics [6,10]. In this Letter, however,
we will focus on the far reaching consequences that even
minute amounts of a random perturbation have on the
extent and nature of order correlations in nematic liquid
crystal (LC) systems. The basic reference point to discuss
the effect of a random perturbation on ordered phases
is still, for its simplicity and generality, the “Imry-Ma
argument” which suggests that an arbitrarily low amount
of static disorder should suppress long range order (LRO)
in a large enough continuous symmetry system in three
dimensions [1,6]. While this is to some extent verified ex-
perimentally, e.g., in the case of nematics [8,11], very little
is known on the nature of the residual order, if any, and
in particular if the correlation length z for a three-
dimensional system has a truly short range, exp�2r�z �,
type dependence on distance r or if it is instead quasi-
long-range [4,12]. Here we address this problem both
experimentally and with computer simulations and we
investigate the behavior of a nematic phase distorted
by random quenched disorder. This can be achieved in
practice for filled nematics (FN): nematics where finely
dispersed silica at suitably low volume fraction f forms
a colloidal gel with at least some nonannealed disorder
and with the silica branches creating an aligning effect
in random directions [13]. Experiments on FN show that
the isotropic-nematic (NI) phase transition is rounded
when f is above 0.04 [14]. Parallel investigations on LC
incorporated in silica aerogel indicate that the NI coexis-
tence is suppressed when f is above 0.2 [8,11]. While
this is certainly sufficient to deduce the loss of LRO, the
reciprocal implication is not necessarily true. Therefore
the singular calorimetry peak observed at lower f is not
conclusive on the loss or permanence of nematic LRO,
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�P2� [15] or S [16]. Furthermore, no experiment has, so
far, determined the correlation function of the nematics
disordered by dispersed silica. On the theoretical side,
many different approaches to the problem of the stability
of nematic LRO to quenched disorder have also been
presented with contrasting conclusions. Maritan et al.
[2] predicted the existence of a nematic phase at low
disorder concentration and temperature from the mean
field solution of a random field Lebwohl-Lasher (LL)
[15] model. More recently, Radzihovsky and Toner [3],
developed an Imry-Ma-like argument which lead to insta-
bility of nematic LRO in the presence of arbitrarily weak
quenched disorder. They also discussed the possibility for
the nematic phase to be replaced by a glassy state charac-
terized by quasi-long-range (QLR) order. A glass phase
with QLR order where the correlation length is infinite
and the correlation function of the order parameter obeys
a power dependence on the distance was also predicted by
Feldman [4] using a renormalization group approach.

Computer simulations on various models have also been
performed to investigate the behavior of nematics in the
presence of disordering fields. In particular, independent
pore approximations [17], spin models with random dis-
ordering field [2,12,18], and models with interconnected
disorder, although for discrete spin orientations [19], have
been investigated. Even if all these models reproduce
qualitatively the phase transition behavior they have been
unable to produce a quantitative account of deviations from
bulk behavior and, more seriously, to convincingly deter-
mine the existence and nature of residual order. Simula-
tions are also plagued with practical difficulties, like the
slowing down and dependence on thermal history induced
by quenched disorder which require extremely long runs
and the need to explore low disorder concentrations that
implies very large sample sizes. Even recent and detailed
studies have been performed on relatively small (up to 283

spins) systems and with little attention to starting condi-
tions [12].
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In this Letter, we present a body of new results, obtained
(i) by measuring the spectral dependence of the total scat-
tering cross section of a FN, and (ii) by performing exten-
sive computer simulations of a modified LL model [15,20].

FN samples were prepared dispersing with a solvent
method [14] in the LC 6CB (nematic between 18 and
29 ±C) a volume fraction f � 0.015 0.03 of Degussa
Aerosil R812 silica nanoparticles, industrially used as
thickeners, and by enclosing the mixture, which is above
the gelation threshold [14], in quartz cells of thickness
d � 20 mm or d � 50 mm. The samples, prepared in the
isotropic phase and cooled into the nematic phase, were
first analyzed by measuring their residual optic anisotropy,
i.e., by detecting the depolarized transmitted light when
illuminating the samples with a focused He-Ne laser
beam as a function of the sample orientation. With this
procedure we have repeatedly explored volumes of about
100 mm3 of FN. Our data indicate that the average bire-
fringence in such volumes is quite small, corresponding to
negligible residual nematic order parameter: �P2� , 0.02.
The loss of nematic LRO is also, but less directly, con-
firmed by the quantitative success in interpreting the
turbidity data in the same samples [21] since residual
LRO would imply smaller optical inhomogeneities and
thus smaller scattered intensity.

Given the large turbidity of FN, the structure factor for
the orientational fluctuations of the optical axis cannot
be simply extracted from the angular dependence of the
scattered intensity because multiply scattered photons
completely mask the single scattering signal. To explore
the local structure factor of FN we propose, as a novel
method, to study the total scattered intensity as a function
of the light wavelength l, thus taking advantage of the
reliable determination of the transmitted intensity even in
highly turbid media. Experiments have been done by il-
luminating the samples with the expanded and collimated
light beam of a UV-VIS lamp with power spectrum
P0�l�, and selecting the transmitted power P by coupling
the light propagating in the forward direction to a 50 mm
optical fiber. P�l�, 300 , l , 1100 nm, is obtained
with a spectrum analyzer, finding typical P�P0 of
1023 1022. From the data we have extracted the turbidity
t�l� � 2 ln�P�l��P0�l���d. We have tested experimen-
tal setup and interpretation by studying aqueous colloidal
suspensions of polystyrene spheres having radius R of
0.1 and 6 mm (Fig. 1, upper plate). For sufficiently small
particles, the Rayleigh-Gans (RG) approximation [22],
predicts t ~ l22 independently from the particle shape,
size, and spacial dependence of the refractive index. This
is verified for the data in Fig. 1B, as well as for FN with
high concentration of silica, and thus short correlation
length z [21]. A completely different behavior is instead
observed, and expected, when the size of the optical
fluctuations (R for the spherical particles and z in the case
of FN) times their amplitude (refractive index mismatch in
the case of colloids and LC birefringence Dn in the case
of FN) is larger than l, i.e., when the RG theory cannot
be used. In this regime, where the anomalous diffraction
(AD) model [22] is instead applicable, t�l� strongly
depends on amplitude, size, and spacial dependence in the
refractive index. The quality of the theoretical predictions
in the AD regime is demonstrated by the dashed curve
in Fig. 1A, obtained with no free parameters. In Fig. 1D
(continuous curve) we show t�l� obtained in a FN whose
zDn . l, i.e., well outside of the RG regime. We
experimentally find, in the case shown in Fig. 1D as well
as in different FN as reported in the inset of the figure,
that t�l� is well described by the power law t�l� ~ la

with an exponent close to zero, i.e., a � 20.3 6 0.1, as
indicated in the inset. To interpret these results we have
extended the AD model previously used to successfully
interpret the t�T � data in Ref. [21]. This model treats
the FN as a collection of independent uniaxial scatterers
having uncorrelated optical axes and embedded in an
isotropic medium whose refractive index is the mean one
of the system. We also suppose that the scatterers have ra-
dial symmetry, their birefringence decaying upon moving
away from their centers as Dn�r� � DnB�T�f�r�, where
DnB�T� is the bulk birefringence of 6CB at the considered
temperature and f�r� is a scalar function decaying to zero
as the distance r from the scatterer center increases. For
each choice of f�r� we then calculate the spatial nematic
correlation function GNN

2 �r� � �P2�n�0� ? n�r��� which,
for this model, reduces to GNN

2 �r� ~ �Dn�0�Dn�r��, where
� � indicates volume averaging. The result is that t�T � is
indeed a negative power of l, the exponent being related
to the shape of the correlation function. This is shown
in Fig. 2, where we plot the exponent a as a function of
k, the parameter controlling the shape of GNN

2 �r� for two
trial families of stretched exponentials and power laws.
We see that the measured a is compatible with a simple
exponential decay of GNN

2 �r� (k � 1), as well as with
power law decays having exponent k � 9 6 2, a value
very much larger than the values usually associated with
QLR order in condensed phases [16]. Accordingly, our
results indicate that the distorted structure of the FN is a
true short range nematic order.

Monte Carlo Metropolis simulations have been per-
formed on the sprinkled silica spin (SSS) model proposed
in Ref. [20], where molecules (or small clusters of them)
are described by units vectors si (“spins”) and a fraction p
of randomly chosen spins are frozen in randomly chosen
orientations rl to mimic the disorder induced by the silica
gel. The Hamiltonian is

U � 2
X

i,j[N

eij�P2�si ? sj�� 1
X

k[N ,l[S

ekl�P2�sk ? rl�� ,

(1)

where N is the set of nematic spins and S of silica spins
of concentration p �

S

�N 1S � . e is a positive coupling con-
stant for nearest-neighbor spins and zero otherwise. The
model clearly reduces to the LL model for p ! 0 and
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FIG. 1. Experimental (continuous lines) and theoretical
(dashed lines) turbidity t versus wavelength l. Upper plate:
colloidal dispersion of polystyrene spheres of radius R �
6 mm �A� and R � 0.1 mm �B�. Lower plate: FN with
f � 0.015 at T � 22 ±C (D). Theoretical curves have been
obtained from the RG model (B) and from the AD model for
spheres (A), for an exponentially decaying GNN

2 (D) and, for
the sake of comparison, for a power law with a � 21 (C).
Notice the trend of a towards 20.25 as z grows and the system
enters the AD regime.

somewhat resembles the uniform random field Hamilto-
nian employed in [12,18], where the random perturbers
are uniformly distributed across the sample. However, the
SSS model has some advantage over the uniform random
field, since it allows varying the impurity concentration
and adds dopant localization so that we can also see how
the disorder propagates from the random perturbers and
determine if and how this is healed by the nematic. We
expect the number of spins of the system to play a crucial
role, and here we have investigated the dependence of the
simulation results on the lattice size in a series of well-
defined cooling runs. In Fig. 3 we show the decay, in lat-
tice units, of the nematic correlation function GNN

2 �r; L�
calculated in simulation boxes of various linear size L for
a system where p � 0.14 and at the reduced temperature
T� � 0.2. The simulations have been performed starting
from isotropic initial configurations. Data analysis reveals
the following: (i) the GNN

2 are all very well represented
by exponential functions decaying to a finite plateau (ii)
�P2�L decreases with the size as �P2�L ~ L21.5, as better
shown in the inset of Fig. 3; (iii) regardless of L, the ini-
tial slope of GNN

2 is the same. These results coherently
support the notion that GNN

2 �r; L ! `� is an exponential
decaying to zero with a decay length z extracted from the
common initial slope as shown in the figure. Evidence (ii)
is thus understood as a decay of �P2� approximately as the
inverse square root of the number of correlated z 3 subvol-
umes, while further checks have shown that evidence (iii)
holds when L . z . Analogous results for the correlation
function decay have been obtained for various lattice sizes
1010
FIG. 2. a vs k parameter predicted by the AD model using a
stretched exponential (continuous line) and a power law (dashed
line) correlation decay type. The grey area indicates the range
of experimental a.

and p � 0.05. Hence simulations, in agreement with ex-
periments, indicate that, at finite values of p the nematic
order is short ranged. Systematic extensions to smaller p
are increasingly difficult, especially because of the L . z

condition, and we have focused on comparing our results
with the basic Imry-Ma scaling behavior. The Imry-Ma
criterion was based on a magnetic like interaction between
the local field h and spin s in the same lattice position
i, i.e., si ? hi but it is applicable for any local coupling
between spin and field which, upon randomly choosing hi ,

FIG. 3. Orientational correlation GNN
2 �r� versus distance r at

T � � 0.2 and a density of sprinkled disorder: p � 0.14 as ob-
tained from MC simulations of 103 (A), 203 (B), 303(C), and
503 (D) lattices. The lines give exponential plus plateau fits to
the curves. The correlation z is extracted by the common initial
slope (straight dashed line). In the inset average nematic order
vs scaled L�z , including data for L � 10, 16, 20, 30, 50.
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FIG. 4. Correlation length z obtained from the simulation at
T � � 0.2, plotted as a function of the amount of quenched dis-
order p. The solid line fits z as obtained in the most densely
disordered systems.

results in a random variable of zero average, as is the case
for P2�si ? hi�. Consequently, the volume coupling energy
EV of a domain of size L with the random field in the SSS
model scales with p and L as EV ~ p1�2L3�2, in turn im-
plying that the typical distortion length scales as z ~ p21

[1]. This prediction can be directly tested by the simula-
tions and, more indirectly, compared with the experiments.
In Fig. 4 we show z extracted from the initial slope of the
simulated GNN

2 �r; L� showing that the scaling z ~ p21 is
beautifully confirmed. An analogous scaling behavior has
been observed in real FN systems, namely z ~ f21.6 [21]
and z ~ f21.35 [23]. The trouble in interpreting this result
is the unclear connection between the silica volume frac-
tion and the “disorder density” variable p. Specifically, to
compare the experimental results with theory and simula-
tion requires mapping the randomly oriented but spatially
structured disorder provided by the silica aggregate in a
FN into an “equivalent” spatially and orientationally ran-
dom disorder. Although only the knowledge of the detailed
gel structure would enable a final model, an important clue
is provided by the fact that the silica nanoparticles form a
fractal structure having fractal dimension df � 2.4 [14].
Fractal gels are generally described as a uniform disper-
sion of interconnected fractal clusters which, in our case,
constitute the “units” providing the disorder. The volume
of such clusters grows more than linearly with the num-
ber of aggregated particles. Assuming that the aggrega-
tion number grows proportionally with f and that p can
be identified with the volume filled by the silica structures,
we find p ~ f3�df , not far from the experimental findings.

In conclusion, we have shown that experiments and
Monte Carlo simulations coherently indicate that, at a
given finite amount of disorder, the nematic ordering ob-
tained by cooling into the nematic phase a system pre-
pared in the isotropic phase, is local and short ranged.
This proves the short-ranged nature of the nematic ordering
at finite disorder concentration and provides a conclusive
verification of the basic scaling behavior contained in the
Imry-Ma argument, which, in turn, leads to conclude that,
even at arbitrarily low density of disorder, the long-ranged
nematic order is suppressed.
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