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The implementation of a Monte Carlo code for simulations of liquid crystal lattice models
on the Quadrics massively parallel SIMD supercomputer is described. The use of a
Quadrics with 512 processors is proving essential in studying the nematic—isotropic phase
transition to an unprecedented level of accuracy using more than 108 particles. Here some
tests on the Lebwohl-Lasher model with and without an applied field are presented.
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1. Introduction

Liquid crystals constitute a state of aggregation of matter intermediate between
solids and liquids.! Their main characteristic is the presence of long-range orienta-
tional molecular order together with flow properties similar to those of liquids. This
orientational order can be characterized, at least for systems formed of molecules
with cylindrical symmetry, by the average of the second Legendre polynomial of the
angle  between molecule axis and the overall preferred orientation of the liquid
crystal (the “director”)

(P2>E<gcos2ﬁ—%>. (1)

(P9 is one when all molecules are perfectly aligned with the director, and decreases
with increasing temperature until at a temperature Ty a weak first-order transition
to the isotropic liquid state is reached, where (P5) goes to zero. This behavior has

*A preliminary version of this work was presented at the Workshop “From APE100 to APEmille:
Results and Perspectives”, Frascati, Italy, 17-19 February 1997.
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been fairly well studied both experimentally and theoretically, although many of
the features of the phase transition, e.g. its critical exponents, are still a subject of
discussion. Computer simulations have also been applied to investigate the physics
of liquid crystals since the pioneering work of Lebwohl and Lasher (LL).? In this
model attention is focused only on the orientational properties and the LL potential
plays, in the field of liquid crystals, a role similar to that of the Heisenberg or
Ising models in magnetism. The LL model is mathematically equivalent also to
the ferromagnetic RP? system of interest in lattice field theory.3* The particles,
represented by three-dimensional spins placed at the sites of a cubic lattice, interact
through the attractive nearest-neighbor pair potential:

Uij = —Gij[%(w “uy)? — %] (2)
= —GijPZ(COS ﬁ”) (3)

Here ¢;; is a positive constant, €, for nearest-neighboring particles ¢ and j, and zero
otherwise; and f;;, is the angle between the axis of these two molecules u;, u;.
This simple model reproduces fairly well the orientational phase transition and the
related physical observables,?5 8 thus the choice of fixed positions at lattice sites,
even though clearly not correct in reality, does not influence the essential orienta-
tional behavior near the phase transition. A large amount of work has been done

1717 and recently, with the development of more

on generalizations of the LL mode
powerful computers, potentials with translational degrees of freedom have been
introduced.'® 2% However, lattice models still present several advantages in com-
parison with these “more realistic” potentials. First of all on a lattice it is possible
to treat a number of particles at least one or two orders of magnitude larger, so that
the transition temperature can be located with a greater accuracy. This is a crucial
point because the nematic-isotropic phase transition is not completely understood:
an analytic solution of the model does not exist and while any sensible approximate
theory (molecular field, Two-Site Cluster, etc.) gives a phase transition, no theory
has yet been able to correctly predict more subtle but fundamental features such
as the pretransitional effects, taking place above the disordering transition and di-
verging for real systems about 1K below Txr. It is then essential to have reference
calculations on the LL model to test if this simple potential is adequate or not.
Thus the transition and its neighborhood have to be studied with a temperature
resolution as small as possible and certainly below 0.1 K equivalent and this re-
quires very large lattices. Presently the uncertainty on the transition temperature
is about 0.2K obtained with simulations of a 30 x 30 x 30 system.?>~” Moreover,
apart from basic research, the large number of spins permits to tackle computer
simulations of certain technologically relevant systems, such as LC displays.!® In
this case investigating the model in the presence of external fields of different type
and intensity is important. The availability of powerful computers is then essential
for the aims mentioned above and here we wish to present the implementation of a
MC code on a Quadrics and some tests and examples.
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2. Implementation of the Code on Quadrics: Main Features

Quadrics computers are parallel SIMD machines derived from APE100, a special
purpose computer originally developed by INFN (National Institute for Nuclear
Physics, Italy) for lattice QCD.?! In particular we have used Q1 and QH4 Quadrics
machines with 8 and 512 processors respectively. We shall see that the nearest-
neighboring Lebwohl-lattice models we deal with can be easily implemented on the
Quadrics architecture.

Since our aim is to simulate a (large) lattice of L x L x L particles we follow
a domain decomposition approach, making a geometrical subdivision of the sample
and following the machine architecture by placing on each processor a l; x I, x I,
particles sublattice:

ly = L/N,
ly =L/N,
l,=L/N,

where N, N, and N, are the number of nodes for each side of the Quadrics
machine.

Clearly, we shall have to pay attention to the interactions of the particles on the
edges of the sublattice with their neighbors, because they reside on the adjacent
processor and an inter-node communication is needed. We also recall that, because
of the SIMD architecture of the Quadrics machines, all the calculations, as well as all
the communications, are globally performed at the same time on all the processors.

On a sample made of 1728000 particles, each node owns a domain made of
15 x 15 x 15 particles. So there are a total of 2 x 6 x 153 = 40500 interactions to be
calculated by each node. Just 2 x 6 x 152 = 2700 of these involve a particle residing
on an adjacent processor. Furthermore the number of communications is halved,
because the factor 2 is needed to count both the old and the new energy calculations
(to apply the Monte Carlo acceptance criterion), for which the neighboring particles
are still the same. Because of this it is very important to aim at the target of getting
the best performance in the single processor code.

The Quadrics processors are characterized by the fast execution of the normal
operation (A X (£B))£C when the operands are still on the registers (one operation
for clock cycle). So the bottleneck in the execution is primarily due to the memory-
to-register and register-to-memory data transfers; these operations can be pipelined,
i.e. if we need to load into the registers a sequence of contiguous memory locations,
the fetch is slow (four clock cycles) just for the first data item, while the following
ones are loaded at high rate (one clock cycle each).

The TAO language?? allows an optimization of the usage of the 128 hardware
registers. Moreover the features of the Quadrics ZZ language allow the programmer
to write a simplified code doing operations, such as loop-unrolling and in-line code
expansion, implicitly.
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The memory organization of the code has been set up ad hoc, to take advantage
of the pipelined execution. The main idea consists in the loading of columns of
particles, with their neighbors, on the registers, to allow the fast execution for more
than one particle.

Using the TAO syntax, the new datatype three has been defined:

matrix real three.[3]

This is a generic type composed of three real numbers. In particular it is used
for the representation of the particle orientations in terms of director cosines, i.e.
using Euler angles, for the ¢th particle:

Uiz = COS @ Sin f3; (4)
Uiy = sin o sin G; (5)
ui; = cos f;. (6)

To easily take advantage of the pipelined memory retrieval-storage a new type
use, composed of hmz (acronym for How-Many-Z) three, has been created:

three use.[hmz]
These are hmz consecutive orientations along the z direction. Finally the u array
containing the molecular configuration has been created:

nz = ndz/hmz

use ul[ndx,ndy,nz]
where ndx, ndy and ndz are the dimensions of the portion of the whole sample
owned by one node. ndz has to be a multiple of hmz.

The data needed on the registers to optimally exploit the processor performance
are the following:

e 3 x hmz real numbers for a block of orientations along the z direction.

e 4x 3 xhmz real numbers for the left, front, right, and rear blocks of orientations
with respect to the previous one.

e 2 x 3 real numbers for the up and down particles.

e 3 x hmz real numbers for the random numbers needed for the Monte Carlo
method. For each move two of them are for the Barker and Watts?3 move and
the third one for the Metropolis Monte Carlo acceptance criterion. We use the
Metropolis prescription?* for the local lattice updating, which in this SIMD
implementation is performed with a synchronous scanning of the different
sublattices.

e 3 x hmz real numbers for the trial orientations.

e nine real numbers to accumulate the global energy (1), the ordering matrix
(6) and the acceptance rate (2).

The optimal value without exceeding the registers at our disposal has been found
to be hmz = 3, making up 78 physical registers (usually about 90 of the total 128
are usable).
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The code is based on several libraries of TAO statements and functions, both for
general Monte Carlo purposes and for the Lebwohl-Lasher potential in particular.
The main libraries are:

o Algebraic library. A general purpose library for computing operations on vec-
tors (scalar products, normalizations, etc.) and for diagonalizing a symmetric
3 x 3 matrix.

o Lebwohl-Lasher library. A library of TAO functions and statements for
Lebwohl-Lasher model.

e Order library. A library for computing ordering matrices.®

e Fast memory access. This is a library for fast memory access, i.e. we reduced
the ratio of memory access time versus calculations time, using optimized

extract and replace statements.
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Fig. 1. A schematicrepresentation of the whole system on a QH4 machine (a), the spin organisation
on a single processing element (b) and the dataloaded on the registers for the pipelined calculation
(c) (see text).
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3. Tests and Examples

To test the code we have performed a complete simulation on a relatively small
cubic lattice of 30 x 30 x 30 spins.

A number of properties are calculated. The most important are the dimension-
less energy U* = U/kT, calculated as a sum of pair interactions (Eq. (2)), the
heat capacity Cy,, obtained by differentiating the average energy with respect to
temperature, and the order parameters, particularly (P;). The order parameter
cannot be calculated directly from Eq. (2) because of potential director fluctuations
during the simulation, and is evaluated with respect to the instantaneous preferred
direction using the largest eigenvalue of a suitably defined ordering matrix.?5¢ In
Fig. 2 we show this second-rank order parameter < P, >) as obtained from the
test simulation and some points of the megaparticle simulation (see next section).

5 are also reported for comparison and

Results from the 303 previous calculations
provide an excellent test of the program. The results are correct and reproduce well
the behavior of the thermodynamic observables versus temperature curves.

As mentioned above we are interested in two lines of work and here we summarize

some results.

3.1. Very large scale systems

We have been using the code to simulate what is by far the largest LL system to
date, i.e. N = 120x120x 120 (1728000 spins). We recall that until now there are no
systematic LL simulation for samples larger than 27000 spins and then the present
simulations, still under way, are the largest one performed in the liquid crystal field
with an improvement of nearly two orders of magnitude in the system size. Here
we report in Fig. 2 some preliminary results (squares) that are already sufficient to
indicate the large improvement in the sharpness of the transition.

<07
N [ o N=30X30X30 (Q1)
VLR = N=120X120X120 (QH4)
f o o N=30X30X30 (CRAY)
0.5 F
0.4 i.g
[ )

Fig. 2. Second-rank order parameter (P») versus reduced temperature T* = k7'/e as obtained by
MC simulations on Quadrics (full symbols) and on Cray-XMP® (empty symbols).
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Fig. 3. Second-rank order parameter (P)) versus reduced temperature 7* = kT/e for different
values of field strength, €.

3.2. Simulation of the effect of an external field on a nematic system

The case we wish to tackle here is that of the effect of an applied field on the
molecular organization and on the nematic isotropic phase transition. To do this,
a suitable second rank “field” term is added to the LL Hamiltonian to keep into

account the contribution to the orientational energy due to the interaction between
the spins and the external field!3:

N
Uy = —Zeijpz(cosﬁij) —e&ZPz(cosﬁi) (7)

< =t
where N is the number of particles of the system, [; is the angle between the
field direction and the particle symmetry axis and & determines the strength of
the coupling to the field. The effect of the external field is a stabilization of the
ordered phase with a change in the character of the transition from first to second
order as the intensity of the field increases with disappearance of the transition at
a critical point. In Fig. 3 we show the second-rank order parameter, (Po)y, plotted
against the reduced temperature for some values of field strength as obtained from
simulations of a 30 x 30 x 30 system performed on a Quadrics Q1 machine. The
shift and rounding of the transition is apparent even from this preliminary results.

4. Conclusions

The Monte Carlo simulation of models of the Lebwohl-Lasher type, widely used
in the study of liquid crystals and their phase transitions can be effectively im-
plemented on Quadrics supercomputers. Our results show that systems up to
120 x 120 x 120 can be studied, opening the way to significant improvement in
the determination of transition properties.
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