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A Monte Carlo study of the chiral columnar organizations of dissymmetric
discotic mesogens

R. Berardi, M. Cecchini,a) and C. Zannoni
Dipartimento di Chimica Fisica e Inorganica and INSTM, Universita`, Viale Risorgimento 4,
40136 Bologna, Italy

~Received 10 April 2003; accepted 15 August 2003!

We study the relation between the chirality of a discotic mesogen and that of the chiral columnar
aggregates that they can spontaneously form by self-assembly. We discuss first the different types of
chiral columns that can be in principle obtained. We introduce then a simple two-site Gay–Berne
dissymmetric molecular model where chirality can be easily varied and perform extensive NPT
Monte Carlo simulations of samples of these particles for different chiralities. At low temperatures
we find nematic discotic and columnar mesophases formed by overall chiral columns and we
analyze the results in terms of suitably defined observables and chiral correlation functions. We find
that, at least for our model system, the columnar chirality is not originating from a regular helical
or spiral arrangement of particles but it is mainly due to one-particle high-chirality defects separated
by low-chirality domains. ©2003 American Institute of Physics.@DOI: 10.1063/1.1616913#
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I. INTRODUCTION
Chirality is a far reaching property in the large sca

supermolecular organization of living matter an
materials.1–6 Particularly striking is the formation of twiste
nematic ~cholesteric!, and columnar liquid crystal phase
where minute chiral perturbations at molecular level prod
macroscopically detectable effects. Indeed it has been sh
long ago by Grayet al.7 that even an isotopic substitution o
a hydrogen with a deuterium, that causes a carbon atom
mesogen to become dissymmetric, is sufficient to deform
nematic into a twisted,N* structure. These effects and mo
generally chiral versions of liquid crystalline phases a
known both for rodlike molecules and their calamitic~nem-
atic, smectic C! type phases as well as for discotic mesoge
and their nematic and columnar phases. Of these two cla
calamitic phases are by far the most studied, if only beca
chiral discotics have been discovered and character
rather recently.8 Chiral columnar mesophases are howe
particularly interesting,9 also because of their ferroelectric10

properties, and a number of these chiral columnar syst
have now been prepared and their properties studied.11–16

From the theory and modelling point of view the relatio
between a discotic and its chirality and the mesopha
formed is certainly not clear. This is partly due to the co
plexity of the molecular structures that can give chiral c
umns and the difficulty in identifying a precise relation b
tween some key molecular features and observa
properties. In this paper we have thus chosen a very sim
model for a chiral discotic molecule, formed by two suitab
oriented interpenetrating Gay–Berne17 squashed ellipsoids
We shall see later on that varying the size of the second
with respect to the first one, molecular chirality can be var
in a controlled way. The model is reminiscent of molecu
with planar chirality12 where handedness results from t
arrangement of out of plane groups with respect to the

a!Present address: Department of Biochemistry, University of Zu¨rich,
Winterthurerstraße 190, CH-8057 Zu¨rich, Switzerland.
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erence plane, rather than by introduction of chiral carbo
We then consider some of the main types of chiral colum
organizations that can be generated and discuss how to
sify and distinguish them by using suitably introduced o
servables. For instance, chiral columns can have collin
centres along the column axis, with tilt and twist propagat
along the column or alternatively they can also have mole
lar centers describing a spatial helix around the column a
We have then quantified this in terms of a set of chiral c
relations and other observables that can, in principle, be
tained from computer simulations. This should help in est
lishing how to actually detect from simulation results wh
organization is obtained. With these tools available, we p
form a set of Monte Carlo~MC! ~Refs. 18–20! computer
simulations on three types of disks with different chirali
and, applying the techniques just mentioned, we discuss
organizations obtained. It is worth noting that chirality e
fects on one hand and the difference between the diffe
chiral structures on the other are rather small and that it is
at all obvious that computer simulations can give the des
information particularly in the presence of numerical erro
and defects. Testing this point will also be one aim of th
work.

II. MOLECULAR MODELLING

A large number of chiral discotic mesogens can be r
resented as ‘‘decorated disks’’ where a suitable set of sub
stituents attached to a planar core renders the whole m
ecule chiral. One of the simplest models of these disco
mesogens is a chiral two-sites~CTS! one where the centra
core unit is represented by a single oblate ellipsoid w
uniaxial or biaxial symmetry and the peripherical residu
responsible of the overall molecular chirality, by the ins
tion of a second, typically smaller, transversal disk~see Fig.
1!. Clearly in this schematization, the first site represents
reference planar structure of the mesogen~‘‘ core’’ ! typically
formed by aromatic condensed rings and possibly other
idly connected groups. The central site can therefore
3 © 2003 American Institute of Physics
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thought of as having the role of allowing the formation of
columnar liquid crystal phase while the transversal site
duces chirality in the mesophase structure itself. We h
considered a system formed by a set ofN identical CTS
particles and to describe the interactions between the e
soidal sites belonging to different interacting particles,
have chosen the biaxial heterogeneous version of the G
Berne ~GB! potential.21,22 The GB model itself has prove
very successful in generating a variety of liquid crys
phases starting from simple monosite particles,23,24 and, in
particular, GB disks originateND and columnar phases.

The potential between a pair of multisite moleculesi and
j is written as

Ui j ~v i ,v j ,r i j !5 (
aP i ,bP j

Uab
GBX~va ,vb ,rab!, ~1!

where the site–site interaction is

Uab
GBX~va ,vb ,rab!54e0e~va ,vb , r̂ab!

3F S sc

r ab2s~va ,vb , r̂ab!1sc
D 12

2S sc

r ab2s~va ,vb , r̂ab!1sc
D 6G .

~2!

FIG. 1. Modelization of a chiral CTS discotic molecule with two biaxi
Gay–Berne particles~from top to bottom mol-X, mol-Y, and mol-Z axes
views!. The molecular frame, centered on the center of mass and orie
with respect to the moment of inertia is also shown. GB site sizes
relative positions are those of model@c# described in the text.
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The biaxial ellipsoids representing the sites have orienta
va , andvb ~we use Rose25 notation for rotations! and their
site–site interparticle vector israb5rb2ra5r abr̂ab with
length r ab , where we use the cap to indicate a unit vect
Since the molecules are rigid there is a simple geometr
relation between the molecular orientationsv i , andv j , the
center–center intermolecular vectorr i j 5r j2r i5r i j r̂ i j and
the sites orientations and positions. The potential contain
anisotropic contact distance,s(va ,vb , r̂ab), and an interac-
tion term,e(va ,vb , r̂ab), namely,

s~va ,vb , r̂ab!5@2r̂ab
T A21~va ,vb! r̂ab#

21/2, ~3!

where the symmetric overlap matrixA is defined as

A~va ,vb!5MT~va!Sa
2M ~va!1MT~vb!Sb

2M ~vb!, ~4!

and Si is the shape matrix with elementsSab
( i ) 5da,bsa

( i ) ,
where sx

( i ) , and sy
( i ) , and sz

( i ) are the three axes of eac
ellipsoidal fragment. TheM (v i) are rotation matrices con
necting the laboratory to the fragment framei. The interac-
tion term is e(va ,vb , r̂ab)5en(va ,vb)e8m(va ,va , r̂ab),
with m andn empirical exponents,17 and

e~va ,vb!5F 2se
~a!se

~b!

det@A~va ,vb!#
G1/2

, ~5!

with geometrical scaling constantsse
( i )5@sx

( i )sy
( i )

1sz
( i )sz

( i )#@sx
( i )sy

( i )#1/2, and

e8~va ,vb , r̂ab!52r̂ab
T B21~va ,vb! r̂ab . ~6!

The symmetric interaction matrixB is

B~va ,vb!5MT~va!EaM ~va!1MT~vb!EbM ~vb!, ~7!

where the matrixEi with elementsEab
( i ) 5da,b(e0 /eab

( i ) )1/m

contains the parametersex
( i ) , andey

( i ) , andez
( i ) proportional

to the well depths for theside-by-side, face-to-face, andend-
to-endinteractions of the fragments.

In the biaxial Gay–Berne potential the interaction e
ergy also depends on two tuning parametersm, n and the
parametersc which measures the width of the potenti
wells22 and has been computed assc5(1/2)@sc

(a)1sc
(b)#

with sc
( i )5min$sx

(i) ,sy
(i) ,sz

(i)%. Distances and interaction ene
gies are scaled with respect to the chosen reference mo
lar units:s0 for distances, and ande0 for energies.

III. MOLECULAR CHIRALITY PARAMETERS

Since our main task is to relate molecular chirality
phase organization, it is clearly essential to start by introd
ing a quantitative measure of molecular chirality. This is
deceivingly simple task as it can be based on a variety
properties of interest and indeed there are a number of d
nitions in literature.26 In general, these different definition
relate a chirality parameter to some third rank tensor whic
nonzero in the absence of a symmetry center and tha
relevant to the problem. In this work we follow the approa
proposed by Nordio and co-workers27 that describes chirality
as a property connected to the molecular surface and sh
Applying this model to our chiral particles requires calcula
ing the surface~T! and the helicity~Q! tensors27 of the par-
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ticle. The T tensor, with elementsTab , describes how the
surfaceSof an object, with local normal vectorŝ, extends in
space,

Tab52^sasb&52E
S
dSsasb , ~8!

Tr@T#52S, ~9!

where the surface integral is carried out over the product
the componentssx , andsy , andsz of ŝ measured with re-
spect to the molecular frame. On the other handQ is a
second-rank pseudotensor with elementsQab related to the
third-rank tensorQabg

(3) that describes how the surface orie
tation changes moving along the three directions of Carte
space,28

Qabg
~3! 523^sar bsg& ~10!

and

Qab52 1
3(

g,d
eagdQgdb

~3! , ~11!

where r a are the components of the position vector of t
surface element, andeabg are the elements of the Levi
Civita tensor. Combining the diagonal components of th
second-rank tensors Nordio and co-workers27 have obtained
a single pseudoscalarx associated with the overall chiralit
of the surface

x521000~QxxTxx1QyyTyy1QzzTzz!/S
5/2. ~12!

From symmetry considerations it follows thatx vanishes for
achiral systems. In addition, it has opposite sign for t
enantiomers, as a consequence of the invariance ofT and the
change of sign ofQ components. Finally, the normalizin
factor S5/2, makes the product independent of the actual
tent of molecular surfaceS.

IV. PARAMETERIZATION OF THE CTS MODEL

Following the ‘‘decorated disk’’ idea, we have studied
three model systems of different shape chirality. The first a
simplest contains only a reference nonchiral system, form
by a squashed biaxial ellipsoid, with aspect ratios inspired
reference to substitued pyrenic core discotics like the m
ecule 1,3,6,8-tetrakis~~S!-2-~heptiloxy!propanoyloxy!pyrene
denominatedP4m* 10.10 This mesogen, originally prepare
by Boch and Helfrich,10 exhibits upon cooling from isotropic
a chiral columnar phase from 307 K to 269 K where it b
comes a crystal. This molecule is much too complicated
least at this stage, for a realistic simulation but we adopt
dimensions of its central core comprising pyrene and p
panoyloxy substituents for determining the axes of our r
erence ellipsoid. In practice, we have calculated the ge
etry of P4m* 10 at the Molecular Mechanics level using th
COMPASS98.01~Ref. 29! force field, and computed the ratio
of the sidesbx511.6 Å, andby515.89 Å, andbz53.40 Å
of a box enclosing the core obtainingbx /by50.73, and
bz /by50.214. These ratios have been used to scale the b
ial ellipsoid axes to a volume equal to that of the uniax
discotic particles used in previous studies.30 We have used
this system for a preliminary study in order to find the p
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rameterization required to generate a stable nematic pha
a wide temperature range followed by a columnar phas
lower temperatures. This allows us to evaluate, by comp
son with this reference, the effects of the chiral insertion.

Starting from this simple achiral oblate ellipsoid, w
have developed two additional CTS models by embeddin
second ellipsoidal site so that the particle acquires an ove
dissymmetry~see Fig. 1!. The position and orientation of th
second site are fixed, and models with different shape ch
ity have been obtained by simply scaling the axes of
second site by a factors.

The detailed description of the three models we ha
employed is as follows:

~a! Biaxial monosite achiral particle withsa axes sx

50.95s0 , andsy51.302s0 , andsz50.279s0 , and
interaction parametersex50.55e0 , and ey50.367e0 ,
and ez52.2e0 . The ea coefficients have been chose
considering the interaction energy surface of tw
pyrene cores calculated using the Molecular Mechan
model described so far, and then by reducing by a f
tor 2.5 the ratioez /ex and increasing by a factor 1.2 th
ratio ez /ey in order to mimic the effect of the alkylic
chains.

~b! CTS particle obtained with a type@a# particle transver-
sally embedded with a second, smaller, biaxial d
which is weakly attractive, rotated and shifted from t
center of the main site. We have chosen for its s
sx50.547s0 , and sy50.75s0 , and sz50.276s0 ,
and for its interaction termsex50.1e0 , and ey

50.1e0 , andez50.1e0 . The position of the tilted disk
with respect to the origin of the main site isX50, Y
520.35,Z50 while its orientation, in terms of Eule
angles, isa50°, b515°, and g560°. The shape
chirality parameter calculated for this model isx
522.08, and the size of the second site has been
sociated to a scale factors51 ~see Fig. 2!.

~c! CTS chiral particle similar to the model@b# but char-
acterized by a higher shape chirality. Model@c# is ob-
tained by using a scaling factors51.19927 for the sec-
ond disk, corresponding tosx50.656s0 , and sy

50.9s0 , and sz50.331s0 . The shape chirality pa-
rameter for this model isx524.455.

FIG. 2. The shape chiralitiesx of the CTS models considered in this wor
~squares! as a function of the scale factors used to dimension the second si
~the units ofs have been arbitrary chosen so thats51 corresponds to mode
@b#!. The continous curve gives the value ofx as a function ofs.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In addition, we have used in all casesm51, andn53 as
model exponents for the GB potential. In Fig. 2 we report
theoretical curve for the shape chiralityx as a function ofs
together with thex values for the model systems consider
in this work. These values have been obtained by numer
integration on the particle surface using a grid of 223400
elements and by following the prescription given by the a
thors of Refs. 27, 28 assuming a uniform density of mass
the overlapped ellipsoidal particles. In practice, we ha
worked in the coordinate system diagonalizingT. For these
CTS models we also employ the molecular units of len
s0512 Å, and of energye0 /kB5100 K. The Gay–Berne
energy profiles for theface-to-face, side-by-side, andend-to-
end interactions for the three models are reported in Fig
We see from the curves for models@b# and@c# that the pres-
ence of the transversal site does not appreciably affect
strongerface-to-face, and side-by-sidecurves and become
relevant only for the weakerend-to-endinteraction. Since the
ea

( i ) coefficients for the transverse sites have been chose
be relatively small compared to those of the main site,
conclude that the small chirality of our particles is essentia
originating from their dissymmetric shape.

V. ORIENTATIONAL AND STRUCTURAL PROPERTIES

To study the nature of the orientational properties of
phases obtained it is essential to compute a set of si
particle order parameters.25,31,32 In practice, the two mos
relevant ones for the present case, are the symmetrised
ond rank order parameters^R00

2 & and^R22
2 &. They are defined

as

^R00
2 &5^ 3

2~ ẑi•Ẑ!22 1
2&, ~13!

and

^R22
2 &5^ 1

4@~ x̂i•X̂!22~ x̂i•Ŷ!22~ ŷi•X̂!21~ ŷi•Ŷ!2#&,
~14!

where X̂, and Ŷ and Ẑ are unit vectors defining the axe
orientation of the mesophase director frame, anda"b repre-
sents a scalar vector product. The order parameters are
puted from the eigenvalues of the three ordering matri
relative to thex̂i , ŷi , andẑi molecular axes.32 We recall that
^R00

2 & corresponds to the standard^P2& order parameter o
uniaxial phases measuring the average orientational orde

FIG. 3. The Gay–Berne energy for a pair of model@a# ~short dashed!, @b#
~long dashed!, and @c# ~continuous! CTS particles as a function of center
center separation. The profiles for theface-to-face, side-by-side, andend-to-
endconfigurations are those shown in order of increasing distance.
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the molecularẑi axis, and that it has a zero value in th
isotropic phase. On the other hand^R22

2 &, which is different
from zero only for biaxial molecules in biaxial phases, a
has as maximum value 1/2, is the largest and thus most
ful biaxial order parameter32 and measures the difference
the average orientational order of the molecularx̂i and ŷi

axes.
The mobility of the particles within the mesophase c

be estimated by using an average mean squ
displacement,33

^ l a&5
1

NM F(
i

N

(
n

M

~r i ,a
~n!2r i ,a

~0!!2G1/2

, ~15!

wherer i
(n)5$r i ,x ,r i ,y ,r i ,z%

(n) is the i th particle position with
respect to the director frame with axesa5X, or Y, or Z, after
n of M Monte Carlo cycles, starting from an arbitrary poi
r i

(0) .
To determine the type of molecular organization of t

ordered phases formed by our model particles we have c
puted various average pair correlation histograms. The
one we have considered is the distribution of centres of m
i.e., the standard radial correlation function;

g0~r !5
1

4pr 2r
^d~r 2r i j !& i j , ~16!

where r is the radius of a spherical sampling region,r the
number density, and the average^¯& i j is computed with
respect to all molecular pairs.

The radial distribution in itself is not sufficient to cha
acterize the columnar phases and their local anisotropy
biaxiality, so we have taken advantage of other pair corre
tion functions. In general we can resort to the expans
coefficients of the general pair distribution functio
P(2)(v i ,v j ,r i j ) which describes the positional-orientation
correlations for a system with overall spherical symmetry,
in the case of a system with no external symmetry break
field

g~2!~v i ,v j ,r i j !5
1

r

P~2!~v i ,v j ,r i j !

P~1!~v i !P
~1!~v j !

, ~17!

where v i , and v j are the particle orientations,r i j is the
intermolecular vector, andP(1)(v i) is the one-particle orien-
tational distribution. This pair correlation function can b
expanded in an orthogonal basis of rotational invariant fu
tions Sn1n2

L1L2L3(v i ,v j , r̂ i j ) ~Ref. 31! as shown by Blum and

Torruella34 and Stone.35 The expansion coefficients of th
pair correlation are functions of intermolecular distancer and
can be routinely computed during a simulation run as av
age histograms.36

In particular, in this work we have characterized the
cal biaxial structure using the following orientational corr
lation functions,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Re@S22
220#~r !5

1

4A5
^d~r 2r i j !~~ x̂i• x̂j !

22~ x̂i• ŷj !
2

2~ ŷi• x̂j !
21~ ŷi• ŷj !

222~ x̂i• ŷj !~ ŷi• x̂j !

22~ x̂i• x̂j !~ ŷi• ŷj !!& i j , ~18!

Im@S22
220#~r !5

2

4A5
^d~r 2r i j !~2~ x̂i• x̂j !~ x̂i• ŷj !

2~ x̂i• x̂j !~ ŷi• x̂j !1~ x̂i• ŷj !~ ŷi• ŷj !

1~ ŷi• x̂j !~ ŷi• ŷj !!& i j . ~19!

The function Re@S22
220#(r ) measures the average correlatio

as a function of distancer, between likex̂i ,x̂j andŷi ,ŷj pairs
of axes, and it is directly related to thêR22

2 & order
parameter.36 On the other hand, the correlation Im@S22

220#(r )
considers unlike pairs, e.g.,x̂i and ŷj .

These observables do not afford an assessment o
chirality of the columnar structures that follows, for instanc
because of a helical distribution of centers of mass ins
columns and a more specific analysis procedure is then g
in the next section.

VI. ANALYSIS OF COLUMNAR STRUCTURES

A significant problem that has to be solved for the ana
sis of the simulation results~similarly to what would happen
for a real sample! is that of recognizing if chiral columna
structures are formed when at sufficiently low temperatu
the system starts to self-organize. To understand how
lecular chirality can perturb the organization of column
aggregates we have, first of all, to extract these cylindr
structures from the sample. This is not trivial also beca
the type of columns, their length, and their polydispersity
not knowna priori. Here, the determination of the column
structure of a MC configuration has been accomplished
performing the following steps:

~a! Identification of columnar aggregates;
~b! Computation of columnwise chiral orientional correl

tions;
~c! Assessment of helical structures by means of a p

positional correlation;
~d! Comparison of results with those for model column

structures;
~e! Study of chiral defects.

The results from steps~a! to ~c! have been averaged ove
all configurations analyzed and used to build average hi
grams related to the whole sample. Further analyses h
been necessary afterwards in order to understand the
played by defects.

The determination of the polydispersity of the distrib
tion of columnar aggregates is the first problem we addr
We adopt a purely particle–particle distance based algori
to assign particles in the MC sample to columnar aggrega
In practice, every pair of molecules with distancer i j smaller
than a thresholdr t is considered as belonging to a colum
By linking all pairs sharing common particles it is possible
Downloaded 28 Oct 2003 to 137.204.192.37. Redistribution subject to A
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determine the composition of the columnar structures a
furthermore, to determine the average distribution of colu
lengths. The identification algorithm used to extract and a
lyze columnar structures from the MC configurations is d
scribed in Appendix A.

Having mapped the particles aggregates we wish to
troduce some indicators of chiral correlation between m
ecules belonging to the same column. The chiral orien
tional correlations we have found useful are

S00
221~r !52

)

A10
^d~r 2r i j !~~ ẑi• ẑj !~ ẑi• ẑj3 r̂ i j !!& i j , ~20!

Re@S20
221#~r !5

1

2A5
^d~r 2r i j !~2~ x̂i• ẑj !~ x̂i• ẑj3 r̂ i j !

1~ ŷi• ẑj !~ ŷi• ẑj3 r̂ i j !!& i j , ~21!

Re@S2-2
221#~r !

5
1

2A30
^d~r 2r i j !~2~ x̂i• x̂j !~ x̂i• x̂j3 r̂ i j !

2~ x̂i• x̂j !~ ŷi• ŷj3 r̂ i j !1~ x̂i• ŷj !~ x̂i• ŷj3 r̂ i j !

2~ x̂i• ŷj !~ ŷi• x̂j3 r̂ i j !2~ ŷi• x̂j !~ x̂i• ŷj3 r̂ i j !

1~ ŷi• x̂j !~ ŷi• x̂j3 r̂ i j !2~ ŷi• ŷj !~ x̂i• x̂j3 r̂ i j !

2~ ŷi• ŷj !~ ŷi• ŷj3 r̂ i j !!& i j . ~22!

The imaginary parts~not reported here for the sake of co
cision! are also readily derived from their definition.35 By
inspection of the equations above, it is apparent thatS00

221(r )
measures the average chiral correlation between the mol
lar ẑi , and ẑj axes ~i.e., it is related to molecular tilt! at
distancer. In a similar fashion, we find that Re@S20

221#(r )
gives information about cross-correlations betweenx̂i , and
ŷi , and theẑj axis ~i.e., it estimates the coupling betwee
molecular tilt and twist!. Finally, Re@S2-2

221#(r ) relates the ori-
entations ofx̂i , andŷi with x̂j , andŷj axes and measures th
molecular twist correlations. Similarly to what we have do
for the biaxial orientational correlations we have compu
average histograms of these chiral pair functions. In t
case, though, we have adopted a cylindrical shaped samp
region and by using the aggregates provided by the iden
cation algorithm, we have computed these histograms
columnwise fashion.

The columnar structures might also exhibit a helical d
tribution of centres of mass of the particles~‘‘ spirals’’ ! as
proposed by Bock and Helfrich.10 Since the orientational chi
ral correlations do not depend on this feature, they can
assess if such a roto-translational axis is present. We h
then introduced to this purpose a more specialized tw
dimensional histogramP(r i j ,a i j ) which measures the aver
age probability of finding a pair of particles of the aggrega
at distancer i j , and with projection twist anglea i j with re-
spect to the column axisn̂c ~see Fig. 18 below!. In presence
of a helical distribution of the centers of mass a regular p
tern in the maxima ofP(r i j ,a i j ) should emerge, and from
the slope it should also be possible to determine the he
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pitch of the distribution. The algorithm used for computin
P(r i j ,a i j ) is described in detail in Appendix B.

The various observables we have just introduced ar
principle able to signal the presence of chirality in column
structures but it is difficult to assessa priori their ability to
discriminate between different types of columnar arran
ments. It is thus useful to classify at least some of the ide
ized columnar structures that might arise. Without any
tempt to develop a fully systematic description that would
beyond the scope of this work it is convenient to introduc
simple notation to help in the classification of these orga
zations. As described in Appendix C, here we use three s
bols for labelling the different model columnar aggrega
~see Figs. 4, and 5 for pictorial representations!. In practice,
the model structures can be used to identify which ch
correlations in Eqs.~20!–~22! ~if any! can be used as a ‘‘fin-
gerprint’’ for one of the column types of Figs. 4 and 5. I
Table I we list, for the various structure types, a number

FIG. 4. Orthogonal views of nonhelical model columnar structures witu
50°, and u510°, w50°, and w5215°, and interparticle distancer i j

50.36s0 . For each structure we give the identifying label and show
lab-X, lab-Y, and lab-Z axes views of the molecular organization.

FIG. 5. Orthogonal views of helical model columnar structures withn̂c axis
projection of the interparticle distancezi j 50.36s0 and radius of the helical
distribution 0.1s0 . ~See Fig. 4 for details.!
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correlations which are expected to be nonzero becaus
symmetry. We see, for instance, that if the only nonzero c
relations were the real and the imaginary parts ofS2-2

221(r )
only the twisted nonspiraling columnar structuresh̄ūw or h̄uw

would be compatible with this finding. To further discrim
nate between the two structures one might compute a
tional correlation functions beyond those listed in Table I
is also possible to perform more quantitative estimations
the structure by studying the pair distance dependence o
columnwise chiral correlations, since a variation inu, with
constantw, affects the amplitude of the correlation functio
while a variation inw, with constantu, changes the wave
length of the oscillations. This allows to estimate the avera
molecular tiltu, and twistw in the columns. We notice tha
all these considerations are valid if the supermolecular st
tures are regular and free from defects. The presence o
regularities or defects might modify the appearance of
correlation functions and thus an additional analysis wo
be necessary. We postpone the discussion of the effec
defects to the next section.

VII. MONTE CARLO SIMULATIONS

Turning now to our computer experimental work, w
have simulated, using the MC technique, systems ofN
51024 CTS particles under isobaric–isothermal~MC-NPT!
conditions.19 For each model@a#–@c# the starting configura-
tion was a well equilibrated sample in the isotropic pha
The temperature dependence of the phase behavior was
ied by performing a cooling-down sequence of Monte Ca
runs where for each dimensionless temperatureT*
5kBT/e0 studied the simulation runs have been started fr
the final equilibrated configuration of the preceding tempe
ture. The ranges ofT* studied encompasse isotropic, nem

FIG. 6. The average enthalpy per particle^H* &5(^U&1P^V&)/e0 as a
function of temperatureT* for model systems@a# ~circles!, @b# ~squares!,
and @c# ~triangles!. All MC simulations were run in the NPT ensemble
P* 5100.

TABLE I. List of the columnwise chiral orientational correlations for th
model columnar structures of Fig. 4 which are expected of being diffe
from zero because of symmetry. The labelsR, I stand for real and imaginary
part.

h̄ūw̄ h̄uw̄ h̄ūw h̄uw h̄wu

S00
221

¯ ¯ ¯ ¯ R
S20

221
¯ ¯ ¯ ¯ R, I

S2-2
221 I I R, I R, I R, I
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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atic and columnar phases for all three models. We have
ployed a rectangular box with periodic boundary conditio
and director axes parallel to the laboratory frame, and s
dimensionless pressureP* [s0

3P/e05100 corresponding to
'0.8 kbar. This relatively high value ofP* is necessary
since we also wish to study the nematic phase of the disc
particles that disappears at lower pressures. The presen
a nematic is also more convenient from the simulation po
of view in order to have a gradual change from the isotro
to columnar phase, thus reducing the chance that the sy
gets trapped in glassy configurations with macroscopic
order and just locally ordered domains. We recall, howev
that in real systems, includingP4m* 10, the nematic is also
normally absent at least at 1 atm. The box shape has b

FIG. 7. The average number density^r* &5Ns0
3^1/V& as a function of

temperatureT* for model systems@a# ~circles!, @b# ~squares!, and @c# ~tri-
angles!.
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allowed to change using a linear sampling of the volu
V* [V/s0

3 by attempting to change the length of one ra
domly chosen simulation box side per time. We have adop
a pair potential cutoff radiusr c54s0 , a Verlet neighbor
list18,19 of radiusr l55s0 , and the acceptance ratio for MC
moves has been set to 0.4. Molecular orientations have b
stored as quaternions.37,38 We have determined thermody
namic observables averaging over MC configuratio
sampled every 20 cycles, one cycle being a random sequ
of N attempted single-particle MC moves. For all samp
studied the equilibration runs were not shorter than 1
kcycles, with the production runs not shorter than 150–1
kcycles.

In Fig. 6 we plot the average enthalpy per partic
^H* &5(^U&1P^V&)/e0 as a function of temperatureT* .
We see that for all three models@a#–@c# there are no appre
ciable discontinuities in the enthalpy in the higher range
temperatures corresponding to the isotropic–nematic~IN!
transitions at temperatureTIN* . A similar behavior can also be
found for the number densitŷr* &5Ns0

3^1/V&, shown in
Fig. 7, in agreement with the experimental finding that th
are very small jumps of density in correspondence of the
transition. A considerably different behavior has been fou
in the lower range of temperatures explored where both
enthalpy^H* & and the densitŷr* & have a small but well
defined discontinuity across the nematic–columnar~NC!
transition atTNC* . The average values of thermodynamic
properties for the three models are reported in Tables II–
MC

lso
TABLE II. The temperatureT* , average enthalpŷH* &, and energŷ U* & per particle, number densitŷr* &,
and biaxial second rank orientational order parameters^R00

2 &, and^R22
2 & for the system ofN51024 monosite

biaxial achiral model@a# particles. All averages were computed by sampling one configuration each 20
cycles over NPT production runs of average lengthNp5150– 180 kcycles at pressureP* 5100. The equilibra-
tion runs lengthNe in all cases were not shorter thanNp5100 kcycles. The root mean square errors are a
reported.

T* ^H* & ^U* & ^r* & ^R00
2 & ^R22

2 &

3.80 8.40960.339 225.20560.247 2.97560.010 0.97260.000 0.05160.018
3.90 9.12660.396 224.70560.283 2.95660.013 0.97160.002 0.04460.018
4.00 10.21360.321 223.94460.217 2.92860.011 0.96860.000 0.03260.012
4.10 11.08760.403 223.37260.281 2.90260.010 0.96660.001 0.04460.016
4.20 12.23960.369 222.59960.254 2.87060.012 0.96460.002 0.03760.014
4.30 13.13960.520 221.97260.355 2.84860.015 0.96160.001 0.02960.012
4.40 13.92660.371 221.47460.257 2.82560.011 0.95960.002 0.02160.010
4.50 14.69860.390 221.00260.267 2.80160.011 0.95660.002 0.01660.009
4.60 20.93460.921 216.60460.666 2.66460.020 0.93360.005 0.01960.010
4.75 23.45860.522 214.95560.339 2.60360.015 0.92160.004 0.01960.010
5.00 25.92360.480 213.48660.305 2.53860.014 0.90460.006 0.01560.008
5.25 28.38160.502 212.14160.291 2.46860.016 0.88260.007 0.01660.008
5.50 30.36160.464 211.13360.250 2.41060.017 0.86760.009 0.01560.008
5.75 32.20460.525 210.28060.258 2.35460.017 0.84260.011 0.01560.008
6.00 33.99360.540 29.49660.266 2.30060.017 0.81660.014 0.01560.008
6.25 35.85460.490 28.69060.238 2.24560.013 0.78760.015 0.01460.008
6.50 37.53260.561 28.02560.260 2.19560.017 0.75860.016 0.01460.008
6.75 39.52360.564 27.25760.243 2.13860.017 0.71060.019 0.01460.007
7.00 41.50460.750 26.54360.292 2.08260.022 0.65260.036 0.01360.008
7.25 43.79660.688 25.74360.262 2.01960.020 0.56060.042 0.01260.007
7.50 47.50360.624 24.47060.245 1.92460.017 0.23260.075 0.00960.006
7.75 48.88460.514 24.07160.196 1.88960.014 0.14460.044 0.00860.006
8.00 50.12160.495 23.73860.196 1.85760.013 0.10260.033 0.00760.005
8.50 52.12160.548 23.24060.199 1.80660.015 0.07360.027 0.00860.005
9.00 53.81560.564 22.86960.195 1.76460.015 0.06760.023 0.00860.005
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 28 O
TABLE III. The average observables for the system ofN51024 CTS model@b# particles.~see Table II for
computational details.!

T* ^H* & ^U* & ^r* & ^R00
2 & ^R22

2 &

3.75 8.34060.333 226.32960.238 2.88460.007 0.96360.000 0.06660.012
4.00 11.35360.354 224.23560.242 2.81060.011 0.95660.002 0.01760.010
4.25 13.71460.443 222.68260.293 2.74860.012 0.94960.002 0.02160.011
4.50 15.82560.440 221.30260.289 2.69360.013 0.94360.002 0.02060.010
4.75 18.17260.447 219.81760.295 2.63260.012 0.93560.003 0.01760.009
5.00 27.17160.492 213.85560.302 2.43860.013 0.88560.006 0.01560.008
5.25 29.72460.537 212.43760.323 2.37260.015 0.86360.009 0.01560.008
5.50 31.84560.467 211.33360.258 2.31660.014 0.84560.009 0.01460.008
5.75 34.08060.493 210.30260.242 2.25360.015 0.81360.014 0.01460.007
6.00 35.85360.567 29.50160.284 2.20560.016 0.78360.017 0.01360.007
6.25 37.89460.491 28.61960.245 2.15060.013 0.74560.015 0.01460.008
6.50 39.55360.529 27.96660.248 2.10560.015 0.71560.019 0.01360.007
6.75 41.79360.567 27.10560.251 2.04560.015 0.63660.034 0.01260.007
7.00 44.24660.743 26.21260.299 1.98260.020 0.52960.048 0.01260.007
7.25 47.33560.671 25.12660.274 1.90660.017 0.27260.091 0.00960.006
7.50 49.20760.512 24.54460.210 1.86160.013 0.11360.045 0.00860.005
7.75 50.31960.473 24.24660.198 1.83360.012 0.10460.044 0.00860.005
8.00 51.38360.493 23.95460.202 1.80760.012 0.08060.031 0.00860.005
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In Fig. 8 we show the plots of̂R00
2 & and we see that al

systems produce one or more orientationally ordered pha
The first transition is from the isotropic to the uniaxial nem
atic phase and it is characterized by a well pronoun
change of̂ R00

2 &, while the corresponding plot of^R22
2 & ~not

shown here for the sake of conciseness! shows no significant
deviations from an average zero value. The uniaxial nem
phase is stable over a wide range of temperatures, un
second, albeit smaller, change of^R00

2 & takes place in corre
spondence of the nematic to columnar phase transition,
signalled by the enthalpy and density. The jump of the or
parameter is negligible for models@a# and @b# and very lim-
ct 2003 to 137.204.192.37. Redistribution subject to A
es.

d

ic
a

so
r

ited for model@c#. At low temperatures all columnar phase
exhibit a rather small but nonzero phase biaxiality. The
tailed nature of these phase transitions has not been fu
investigated since this would require a much larger sam
To evaluate the phase transition temperatures we have fi
the temperature dependencies of the^R00

2 & order parameter
~see Fig. 8! with a spline polynomial of third rank.39 The
transition temperatures,TIN* , and TNC* reported in Table V,
are those corresponding to the maxima of the numerical
rivatives of these spline polynomials.

In Fig. 9 we show the estimated mean square displa
mentŝ l a&. We notice that these values are rather small, e
TABLE IV. The average observables for the system ofN51024 CTS model@c# particles.~see Table II for
computational details.!

T* ^H* & ^U* & ^r* & ^R00
2 & ^R22

2 &

3.70 14.94260.326 223.08860.215 2.63060.011 0.95460.003 0.07060.010
3.80 16.15860.332 222.28460.222 2.60160.011 0.95160.002 0.06360.009
3.90 17.29660.368 221.56160.228 2.57460.012 0.94760.003 0.06660.009
4.00 17.92960.407 221.17860.274 2.55760.011 0.94660.002 0.06460.009
4.10 19.28460.374 220.25260.237 2.52960.011 0.94260.002 0.03860.010
4.20 20.09960.379 219.75360.254 2.50960.015 0.93960.003 0.03860.011
4.30 21.14760.416 219.09560.271 2.48560.010 0.93560.004 0.03660.010
4.40 22.16160.439 218.48560.278 2.46060.010 0.93060.004 0.03460.010
4.50 23.18160.447 217.86060.285 2.43760.011 0.92560.003 0.03460.012
4.60 24.32460.532 217.17960.335 2.41060.013 0.92060.005 0.03860.010
4.70 31.26660.514 212.71260.317 2.27460.014 0.86360.009 0.01560.008
4.75 31.51860.612 212.60360.370 2.26760.014 0.85960.012 0.01560.008
5.00 34.45360.471 210.99360.263 2.20060.013 0.82960.009 0.01460.008
5.25 36.74860.542 29.86060.282 2.14660.014 0.79460.015 0.01460.008
5.50 38.85960.466 28.89460.249 2.09460.012 0.75760.015 0.01360.007
5.75 41.11060.503 27.92460.246 2.03960.013 0.70260.018 0.01460.008
6.00 43.19160.488 27.08260.232 1.98960.013 0.63960.027 0.01260.007
6.25 45.46660.525 26.24260.237 1.93460.014 0.54760.028 0.01160.007
6.50 48.40660.588 25.17160.246 1.86760.013 0.27560.085 0.00960.006
6.75 50.33360.481 24.53860.203 1.82360.012 0.12560.051 0.00860.006
7.00 51.47660.474 24.21060.200 1.79660.012 0.10660.038 0.00860.006
7.50 53.72060.472 23.61060.196 1.74460.011 0.08260.031 0.00860.005
8.00 55.65260.516 23.13760.197 1.70160.013 0.06960.024 0.00860.005
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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in the isotropic phase, as an effect of the high density of
sample. Entering the ordered phases the mobility along thẐ
director axis becomes smaller than that alongX̂ andŶ. This
is expected on the grounds of the discotic shape of our m
ecules. In the columnar region the mean square displ
ments alongX̂, and Ŷ remain equal, showing that the mo
bility along a direction transversal to the columns axes
uniaxial, and the disposition of adjacent stacks is not biax

In Fig. 10 we compare the radial distribution functio
g0(r ) for the three model systems for columnar phases w
comparableT* /TNC* '0.82 scaled temperature. Differenc
in the radial correlation functions are small but significant,
least between the achiral model@a# and the chiral models@b#,
and @c#. In particular, we see that the columns formed
achiral @a# particles are well formed structures, that lead
sharply defined features in the radial correlation. Models@b#,
and@c# give practically the sameg0(r ), with profiles similar
to that of model@a# but with more smeared characteristic
The first two peaks of the radial correlation function are re
tive to pairs belonging to the same columnar aggreg
while the hump corresponding to the ranger'1 – 1.3s0 ,
also contains information on adjacent columns. Since th
peaks are superimposed it is difficult to infer from them wh
is the organization of adjacent columns. However, a vis
inspection shows that on average, the lattice has an hex
nal symmetry~see Fig. 13!, and in spite of the particles bein
biaxial, we do not observe any rectangular packing of c
umns, even at the lowest temperatures. What we do obs
is a small interdigitation of columns, especially for the chi
model @b# and, to a smaller extent, model@c#. This might in
part explain the broader features ofg0(r ) when compared
with that of model@a#. In the nematic phase the three mode
produce organizations with very similarg0(r ) correlations
~results not shown here!.

FIG. 8. The average orientational order parameter^R00
2 & as a function of

temperatureT* for model systems@a# ~circles!, @b# ~squares!, and @c# ~tri-
angles!.

TABLE V. The isotropic–nematic~IN! and nematic–columnar~NC! phase
transition temperatures for the three models studied in this work.

Model TIN* TNC*

@a# 7.39 4.58
@b# 7.15 4.88
@c# 6.41 4.65
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Moving from radial to orientational correlations, we se
in Fig. 11 that the real part of theS22

220(r ) histogram indicat-
ing the local biaxiality stemming from the correlation ofx̂i

andx̂j axes is significantly nonzero in the columnar phase
model@a#, where particles can easily pile one over each ot
with their transversal axes aligned. If we consider a typi
columnar stacked structure, this biaxial correlation exte
on average over a range'1s0 , roughly corresponding to a
stack of 3 molecules. On the other hand, the imaginary p
of S22

220(r ) is nonzero in the columnar phase of models@b#,
and especially@c# where the molecular twist gives rise to
nonzero average correlation betweenx̂i , and ŷj axes ~see
Fig. 12!. The range of this correlation is again'1s0 . In the
absence of a supermolecular columnar structure these ef
become considerably smaller and short-ranged, as we
serve in the nematic phases where they are practically
stricted to the first neighbor~results not shown here!. It
should be noted though thatS22

220(r ) measures small orienta
tional correlations and that it is usually a fairly noisy hist
gram, so quantitative conclusions from the plots of Figs.
and 12 should be taken with care.

Since model@c# is endowed with the highest chirality
we will devote most of our remaining discussion to the M
simulation results for this system trying to analyze its colu
nar structure and twist propagation. In Fig. 13 we show
snapshot of a, highly ordered, low temperature configura
of model @c# particles. The columnar structure is quite ev
dent as well as the hexagonal packing of adjacent colum
but it is difficult to observe in a single configuration we
defined

FIG. 9. The average molecular mean square displacement^ l a& along the
a5X ~squares!, Y ~circles! or Z ~triangles! axes of the director frame for
model @c# system.

FIG. 10. The radial correlation functiong0(r ) for models@a# ~short dashed!,
@b# ~long dashed!, and @c# ~continuous! relative to columnar phases with
similar scaled temperatureT* /TNC* '0.82. Error bars have been omitted t
avoid cluttering the plot.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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structural features which might account for the average b
ial properties measured by the orientational correlation fu
tions discussed so far.

We now turn to identifying the columns and their pol
dispersity considering a typical configuration. The distan
thresholdr t plays a key role in the column identificatio
algorithm: if r t is too small one might overlook significativ
nondensely packed structures~e.g., spatial helices or tilt–
twist coupled columns!; on the other hand, ifr t is compa-
rable~or larger! than the average diameter of columnar stru
tures the selection process could collapse neighbo
columns into a single aggregate giving misleading results
practice,r t has been adjusted by trial and error in order
select all physically meaningful organized structures. A
rule of thumb for discotic mesogens, reasonable lower
upper bounds for the range ofr t are the minimum contac
distances relative to all ‘‘face-to-face’’ and ‘‘ edge-to-edge’’
configurations. In our case, anr t50.55s0 was chosen in
order to allow the extraction of more information and to ga
a deeper insight of the structure of our ordered phases
effectively identifying doublets and triplets of particles. U
ing this threshold, the distribution of column lengths for
typical highly ordered columnar configuration of model@c#
at T* 53.7 is shown in Fig. 14. We observe a domina
population of columns of length comparable to the simu
tion box side. In particular, the population of stacks exte
ing across the whole MC sample is'65% of the total. This
is consistent with the intuitive physical picture of Fig. 13
highly ordered columnar stacks extending throughout the
tire sample.

FIG. 11. The real part of the biaxial orientational correlationS22
220(r ) for

columnar phases of models@a# ~short dashed!, @b# ~long dashed!, and @c#
~continuous!. ~See Fig. 10 for details.!

FIG. 12. The imaginary part of the biaxial orientational correlationS22
220(r )

for columnar phases of models@a# ~short dashed!, @b# ~long dashed!, and@c#
~continuous!. ~See Fig. 10 for details.!
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In Figs. 15–17 we see the plots of the chiral correlatio
for the three systems studied in this work at similar sca
T* /TNC* temperatures. The curve for model@a# is shown just
as a check on numerical errors, and as expected from s
metry considerations it averages to zero. The plots for mo
@b# and@c# show the presence of a net overall chirality of t
MC sample. Particularly for model@c#, Fig. 15 reveals a
clearly defined tilt coupling betweenẑi axes that extends
along the columns without changing sign for a range
'1.5s0 . This behavior is observed for all columna
samples, both close to, and well below theTNC* temperature,
with the range of chiral correlation increasing with the d

FIG. 13. Snapshots of typical MC configuration for the columnar phase
model @c# particles atT* 53.7. Views from theY ~top! and Z ~bottom!
directions of the director frame are shown.

FIG. 14. The distribution of column length probability for a single config
ration of model@c# particles at temperatureT* 53.7. The threshold distance
is r t50.55s0 .
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crease in temperature. The molecular coupling between
and twist is not extremely large but unambiguous from
cross-correlation Re@S20

221#(r ) plotted in Fig. 16. The range i
similar to that ofS00

221(r ), and for both these functions w
notice fairly small error bars. This observation is consist
with the picture of average properties that are common to
configurations produced by the MC simulation. On the ot
hand, Fig. 17 shows that the twist correlation is much m
noisy and short-ranged than the previous two and signifi
tive only between first neighboring pairs. For larger sepa
tions it decreases quite rapidly and becomes of the s
order of magnitude of its fluctuations. Since this correlat
is so short-ranged this result suggests that our chiral sam
do not possess a regular distribution of twist angles pro
gating along the columnar axes such as those depicted
models dispositions in Fig. 4. We have tested the effec
periodic boundary conditions on these results by perform
a MC simulation~150 kcycles long! at a selected temperatur
(T* 54.10) on a much larger sample ofN58192 model@c#
particles and finding essentially the same results for all
servables and the chiral correlation functionsS00

221(r ),
S20

221(r ), andS2-2
221(r ).

Having ruled out the simple twisted column structure
have considered helical aggregates. In Fig. 18~top plate!, we
show the histogramP(r i j ,a i j ) computed for two model he
lical structures with radius of the distribution 0.1s0 and
pitches 3.6s0 , and 7.2s0 . We observe that the pitch of th
distribution can be clearly identified from the slope of t
contour plots for the model structures, but not its radius.
Fig. 18 ~bottom plate! we show the average histogra
P(r i j ,a i j ) computed for a highly ordered columnar phase

FIG. 15. TheS00
221(r ) chiral orientational correlation~computed columnwise

as described in the text! for columnar phases of models@a# ~short dashed!,
@b# ~long dashed!, and @c# ~continuous! with similar scaled temperature
T* /TNC* '0.82. Error bars have been plotted every 20 histogram bins.

FIG. 16. The real part of the chiral orientational correlationS20
221(r ) for

columnar phases of models@a# ~short dashed!, @b# ~long dashed!, and @c#
~continuous!. ~See Fig. 15 for details.!
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model @c#. We see that the distribution is essentially isotr
pic, so we conclude that there is also no overall helical str
ture in this sample. Similar distributions have been found
all temperatures studied of models@b# and @c#.

FIG. 17. The real part of the chiral orientational correlationS2-2
221(r ) for

columnar phases of models@a# ~short dashed!, @b# ~long dashed!, and @c#
~continuous!. ~See Fig. 15 for details.!

FIG. 18. Contour plots of the distributionsP(r i j ,a i j ) computed using the
algorithm of Appendix B for~top plate! a model column of@c# particles with
structurehuw , and~bottom plate! average of the MC simulation of model@c#
particles atT* 53.7. The top plate contours are for columnar structures w
projection distancedn50.36s0 , and helical distribution of centers of mas
with radius 0.1s0 and pitchesq53.6s0 , and q57.2s0 . The contours
correspond to isolines atP(r i j ,a i j )50.02, 0.40, 2.00, and 4.00. The bottom
plate plot gives the average probability density atP(r i j ,a i j )50.04, 0.06,
0.08, and 0.10.
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Continuing our analysis, we notice that in the case
chiral systems@b# and@c# all average columnwise chiral cor
relations computed in the columnar phases are nonzero~see
Figs. 15–17, the imaginary components being not repo
for simplicity!. This finding would sort out the model struc
ture h̄wu of Fig. 4 as the only candidate for the description
the simulated columnar mesophases. On the other han
we compare the average correlation resulting from the si
lation of model@c# at T* 53.70 ~see Fig. 15! with one com-
puted for modelh̄wu with u520°, andw5210° and r i j

50.36s0 ~see Fig. 19! we see that even if the absolu
maxima of the two correlations have comparable heights,
sequence of maxima as function of the distance is comple
mismatched. This behavior is quite general and even a
optimizing the values ofu, and w it was not possible to
identify a model structure with a decreasing sequence sim
to those of Fig. 15. Taking into account model structu
with one or more randomly selected upside down partic
was also not helpful for the interpretation of the simulatio
results. Giving up a sample wide approach we have t
performed a systematic analysis of single columns and
have tried to identify structural features that are comm
between most of the aggregates and that could be respon
of the average behavior of Fig. 15. To do so, we have cho
the lowest temperature sample of model@c# as the candidate
columnar phase with larger chirality effects and correlatio
We have found~see Fig. 20! that the column dissymmetry i
indeed not originating from a uniform chiral arrangement
particles but seems to be mainly due to one-particle hi
chirality defects separated by low-chirality and low
biaxiality domains. In Fig. 20, we see an example of su
structures which is representative of the whole sample.
ticle #14 has a larger tilt than its neighbors and this accou
for: ~a! large short-range chiral correlation, and~b! smaller
long-range chiral correlation with other particles~up to five
molecular dimensions, shown as thick spikes in Fig. 20!. In
addition, we can see from the column snapshot, on top
Fig. 20, that most molecules are arranged in biaxial clus
of two or three particles that do not contribute to the ove
column chirality. Since these molecules possess a small tu
their contribution to the magnitude of the correlationS00

221(r )
is small, and it is not possible to characterize precisely
chiral features of these clusters. We conclude that the l
range chiral correlations are originating from high chiral

FIG. 19. Comparison of the columnwise chiral correlationS00
221(r ) for sys-

tem @c# at T* 53.70 ~see Fig. 15! plotted as a continuous line, and that fo

model h̄wu with u520°, andw5210° plotted as impulses~interparticle
distance isr i j 50.36s0).
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centers separated by low chirality regions. Using this res
it is possible to analyze the chiral correlation functions
other temperatures and compare them with those comp
for the model columnar structures. The results of our ana
ses for the MC simulations of model@c# can be summarized
as follows. At low temperature the columnar mesophases
highly ordered and the high chirality centers are formed
molecules with large tiltu'20° – 25°, twistw'20° – 30°
and chiral correlation with neighboring molecules. The
centers are separated by low chirality regions formed
stacks of molecules with small tiltu,10°, twistw'10° and
biaxiality. At higher temperature and lower orientational o
der the columnar mesophases exhibit chirality cent
formed by molecules with tiltu'15° – 20° and twistw
'20° – 30°. Again, these centers are separated by low ch
ity stacks of molecules with tiltu,10°, twist w'10°, and
small biaxiality. These features are associated to molec
structures that have a small energy difference with respec
achiral ones. According to this interpretation the columns
stable entities but their detailed chiral structure is not. T
columnar organization fluctuates in the course of the simu
tion when chiral and achiral arrangements of particles
continuously generated by the Monte Carlo configurat
space sampling algorithm.

VIII. CONCLUSIONS

We have analyzed the effects of molecular dissymme
of chiral two-sites molecules on the structure and chirality
the liquid crystal columnar organization they form. The c
lumnar systems show an overall average phase chirality
we observe a coupling between molecular tilt and twist
tween pairs of molecules within the same columnar structu

FIG. 20. Example of single-column structural analysis for an aggreg
structure of system@c# at T* 53.70. Top row, from left to right: lab-X, lab-Y,
and lab-Z axes views of a column extracted from a MC configuration. B
tom plate, plot ofS00

221(r ) computed for all pairs in the columnar structur
~dashed impulses!. The lines relative to the defect particle #14, showing t
long range chiral correlation are shown as thick impulses.
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The centers of mass do not describe a spatial helix and
find that it is not possible to analyze the simulation results
terms of a continuous modulation of tilt and twist along c
umns.

For our CTS system with highest shape dissymmetry,
column chirality is not originating from a regular arrang
ment of particles but seems to be mainly due to one-part
high-chirality defects separated by low-chirality low
biaxiality domains. These structures have a small thermo
namic stability and undergo a continous formation and
struction during the evolution of the Monte Carlo simulatio
Although this study highlights that the complexity of chir
organizations is much greater than the simple idealized
tures shown, e.g., in Figs. 4 and 5, we believe the tools
have developed and described will be of use in an impro
description of molecular level experiments and simulatio
as they become available.

ACKNOWLEDGMENTS

We thank MIUR PRINCristalli Liquidi, University of
Bologna, and EU TMR contract No. FMRX-CT97-0121 f
financial support, and Dr. D. Blunk~Köln!, Professor R.
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APPENDIX A: COLUMN IDENTIFICATION PROCEDURE

In this Appendix, we describe the column identificatio
procedure we have used to extract stacks of particles f
the MC configurations. The algorithm proceeds in tw
sweeps. The first is performed by looping over all distin
molecular pairs as follows:

~1! A moleculei is chosen; if the molecule does not alrea
belong to a stack it is assigned a new structure labe

~2! A second moleculej . i is selected. Ifr i j ,r t moleculej
is considered belonging to the same stack contain
moleculei;

~3! Points~1! and ~2! are repeated until all pairs have be
considered.

After completion of the first sweep all stacks formed by tr
lets and doublets of particles will have been identified a
labeled~isolated particles are considered as a one-mole
structure!. The second sweep, performed over all distin
stacks, is necessary for merging particle lists belonging to
same column:
~4! A stack k is chosen; alli molecules belonging to it are

considered;
~5! A second stacklÞk is selected and again, allj molecules

belonging to it are considered;
~6! All distinct pairsi, j are examined: if there is a pair suc

that r i j ,r t the two stacks belong to the same structu
and are labeled with the same column index;

~7! Points~4!–~6! are repeated in order to consider all d
tinct stacks found during the first sweep.

We have found this two-sweeps algorithm able to c
rectly identify samplewide structures without need of corr
tions for avoiding artifacts due to the periodic boundaries
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APPENDIX B: HELICAL AGGREGATES ANALYSIS

Here, we discuss the algorithm used for the computat
of the averageP(r i j ,a i j ) histogram. If an aggregate pos
sesses a rototranslational axis this will be coincident with
mean axis of the column. So, the first part of the algorithm
involved in finding for each column the axisn̂c ~with orien-
tation un andwn) passing through the centroid of the aggr
gate. The optimal orientation of the vectorn̂c is determined
with the following fitting procedure:

~1! A columnar aggregate is sampled from the current c
figuration with the procedure of Appendix A. The aggr
gate is formed byNc particles with positionsr i , with
respect to the laboratory frame. The initial conditio
n̂ciẐ, i.e., un50, andwn50 is assumed;

~2! The centroidr05(1/Nc)S i 51
Nc r i of the aggregate is deter

mined and all positionspi5r i2r0 are then referred to it
(n̂c is assumed to go throughr0);

~3! The projectionssi5(pi•n̂c)n̂c along the axisn̂c and all
distance vectorsdi5pi2si5di d̂i from the column axis
are calculated as well. These quantities are in turn u
to compute the sumD5S i 51

Nc di•di of squared distance
from the axis;

~4! Minimization of functionD in terms ofun andwn , i.e.,
step~3! is repeated until the optimal axisn̂c is found.

The second step of the algorithm deals with the actual co
putation of the two-dimensional histogramP(r i j ,a i j ). No-
tice that we define the histogram as a function ofr i j instead
of its projectiondn along the column axisn̂c because in the
columnar phase the two choices give similar results while
the isotropic phase the latter distance would not be defi
anddn would consequently assume random values~see Fig.
18!. This calculation involves:

~5! Computation of the scalar productsi j 5d̂i•d̂j5cos(aij)
and triple productv i j 5di3dj•r i j ;

~6! Computation ofa i j 5arccos(sij) if v i j .0, otherwise, if
v i j ,0 definea i j 52p2arccos(sij);

~7! Update ofP(r i j ,a i j ) by increasing by one the histogram
bin corresponding to the current values ofr i j anda i j ;

~8! Steps~8!–~9! are repeated for all distinct pairsi, j in the
aggregate;

~9! Steps ~1!–~11! are repeated for all distinct aggrega
structures of all MC configurations analyzed. Finally, t
histogramP(r i j ,a i j ) is normalized.

APPENDIX C: CHIRAL COLUMNS NOTATION

In this Appendix, we define the three-symbol coding w
have used to identify model columnar structures depicted
Figs. 4 and 5. The first symbolh is used to specify the pres
ence of a helical distribution of centres of mass. In additi
we use a bar, e.g.,h̄, to indicate the lack of a certain featur
in this case the absence of a helical structure. A subscripu,
~or ū) is then used to label the presence~or absence! of tilted
ẑi molecular axes with respect to the column orientationn̂c .
A second subscript indicates the twist between neighbo
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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particles, which is a further molecular rotationw around the
ẑi molecular axis. Differently fromu, thesew rotations sum
up along the column, so the first molecule is rotated byw, the
second by 2w, the third by 3w, and so on. WhenuÞ0 ~tilted
column! thew rotation can be performed before~wu! or after
~uw! the tilt, a possibility that of course does not exist wh
u50. The different non helical columnar structures we ta
into account can be described as follows:
(h̄ūw̄), columnar structure characterized by the absence
molecular tilt with respect to the column axis and the a
sence of twist between neighboring particles. So we h
r̂ i j •n̂c51, ẑi•n̂c51, andẑi• ẑj51, and also transversal axe
are mutually parallelx̂i• x̂j51.
(h̄uw̄), tilted columnar structure,ẑi•n̂c5cosu, while r̂ i j •n̂c

51, andẑi• ẑj51, andx̂i• x̂j51.
(h̄ūw), twisted columnar structure where every molecularx̂i

axis forms a nonzerow angle with the neighboringx̂j axes,
r̂ i j •n̂c51, andẑi•n̂c51, andẑi• ẑj51, and for neighboringi,
j particlesx̂i• x̂j5cosw.
(h̄uw), tilted and twisted columnar structure withr̂ i j •n̂c51,
and ẑi•n̂c5cosu, and ẑi• ẑj51, and for neighboringi, j par-
ticles x̂i• x̂j5cosw.
(h̄wu), twisted and tilted columnar structure withr̂ i j •n̂c51,
and ẑi•n̂c5cosu, and ẑi• ẑjÞ1, and for neighboringi, j par-
ticles x̂i• x̂jÞ1.

We have shown in Fig. 4 some representative views
these chiral columns. In a similar way we have built t
model structures of Fig. 5, namely,hūw̄ , huw̄ , hūw , huw , and
hwu , where besides the same orientational distributions s
so far, the centres of mass also describe a helix with ra
0.1s0 and pitch 3.6s0 .
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