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Abstract

We present a generalized biaxial Gay–Berne potential describing the interaction between two arbitrary, not necessarily
Ž .identical, AB ellipsoidal particles. The model does not rely on approximate combination rules like that of Berthelot, but the

Ž .pair energy is nevertheless computed efficiently using molecular parameters, optimized for the homogeneous cases AA and
Ž .BB , such as their respective shape and interaction biaxialities. q 1998 Elsevier Science B.V. All rights reserved.

Ž . w xThe Gay–Berne GB pair potential 1 is a sim-
ple one-site attractive–repulsive interaction that rep-
resents an anisotropic generalization of a shifted
6–12 Lennard–Jones potential. The GB potential
between two identical particles 1, 2 of a certain type
A can be written as

U u ,u ,rˆ ˆŽ .AA 1 2 12

s4´ ´ u ,u ,rˆ ˆ ˆŽ .0 AA 1 2 12

=

12
ss½ r ys u ,u ,r qsˆ ˆ ˆŽ .12 AA 1 2 12 s

6
ss

y , 1Ž .5r ys u ,u ,r qsˆ ˆ ˆŽ .12 AA 1 2 12 s

Ž .where r ' x , y , z is the position of particle i ini i i i
Ž .the laboratory frame, r sr yr ' r ,r ,r is12 2 1 x y z

Ž .the intermolecular vector r 'r r and the unitˆ12 12 12
Ž .vector u ' u ,u ,u describes the orientation ofˆ i i x i y i z

the axis of particle i. s and ´ are taken as unitss 0

for distances and energies. The zero energy contour
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surface around a GB particle interacting with another
parallel one has an essentially ellipsoidal shape and
it is convenient to think of particles interacting via
the GB potential simply as soft attractive–repulsive
ellipsoids. Computer simulations have shown that the
GB potential is sufficiently rich to yield a number of
the bulk phases experimentally observed: isotropic,

w xnematic, and smectic 2–6 for elongated molecules
w xand nematic and columnar 7 for discotic.

w x w xNematic–vapour 8,9 and nematic–isotropic 10 in-
terfaces have also been simulated.

The potential depends on the molecular shape
and well depth through the anisotropic terms

Ž . Ž .s u ,u ,r and ´ u ,u ,r and on two addi-ˆ ˆ ˆ ˆ ˆ ˆAA 1 2 12 AA 1 2 12

tional parameters m and n , where we haveAA AA

added the chemical identity AA subscript which is
usually omitted when only one type of molecule is
dealt with. Given molecular length and breadth s ,e

s and well depth ´ , ´ for an end-to-end ands e s

side-by-side approach, m and n can be used to tune
the potential and, ultimately, to modify the phase
diagram of the system. For instance, using ms2
and ns1, a smectic B phase and a narrow nematic
is obtained with s rs s3 and ´ r´ s0.2 at ae s e s

number density r ) s0.3, but using ms1 and ns3
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a smectic A is also obtained together with a much
wider nematic.

Despite its usefulness, two important limitations
of the GB potential are its uniaxiality and the fact
that it applies to identical molecules. The first limita-
tion is quite severe, in view of the fact that practi-
cally all mesogenic molecules are devoid of cylindri-
cal symmetry. A biaxial version of the GB potential

w xhas been developed by us 11 and then by other
w xgroups 12,13 and is now being used to examine the

possibility of forming biaxial phases. As for the
second limitation, a heterogeneous version has been

w xdeveloped for uniaxial molecules 13 , but to our
knowledge a GB potential for dissimilar biaxial par-
ticles does not exist, although an ellipsoid contact

w xpotential has recently been worked out 14 . On the
other hand, such a potential would be quite useful:
first for the possibility of modelling mixtures, which
are often used in practical applications, to tune spe-
cific liquid crystal properties not only with uniaxial
w x15,16 but also with biaxial molecular models.
Moreover, many experimental investigations of
anisotropic forces and of the mechanism of ordering
are based on the investigation of suitable biaxial

w xsolutes in liquid crystals 17,18 and a heterogeneous
interaction would allow their modelling.

In this Letter, we derive a Gay–Berne potential
for dissimilar biaxial molecules and show how it can
be calculated effectively and parametrized in practi-
cal applications. We start by considering two inter-
acting molecules A and B each described by a
3-dimensional gaussian with ranges s Ž i., s Ž i. andx y

s Ž i., isA,B, along the three axes. The overlapz

integral between two unlike gaussians with the given
orientations v , v , parametrized in terms of Euler1 2

w x Ž � 4.angles 19 i.e., v ' a ,b ,g , or quaternionsi i i i
w x20–23 , and separation r can be computed analyti-12

w xcally and is still a gaussian 11,14 , and its range is
used to define an anisotropic distance function

Ž .s v ,v ,r and a pre-exponential term thatˆAB 1 2 12

gives an interaction strength at zero separation
Ž .´ v ,v . Both depend explicitly on the set ofAB 1 2

coefficients s Ž i. for the two molecules. Thea

anisotropic distance function is

y1r2T y1s v ,v ,r s 2r A v ,v rŽ .Ž .ˆ ˆ ˆAB 1 2 12 12 AB 1 2 12

2Ž .

Ž . Ž .where molecule 1 2 is of type A B , the dimen-
sionless pre-exponential strength coefficient is

1r2Ž . Ž .A B2s se e
´ v ,v s 3Ž . Ž .AB 1 2 det A v ,vŽ .AB 1 2

and the geometrical scaling constants s Ž i. aree

1r2Ž i. Ž i. Ž i. Ž i. Ž i. Ž i. Ž i.s s s s qs s s s ,e x y z z x y

isA, B . 4Ž .
Ž .The symmetric overlap matrix A v ,v is de-AB 1 2

fined explicitly in terms of the dimensions of the two
molecular ellipsoids and their orientations

A v ,v sMT v SŽA .2 M vŽ . Ž . Ž .AB 1 2 1 1

qMT v SŽB.2 M v . 5Ž . Ž . Ž .2 2

Ž .The cartesian rotation matrices M v , defined ini

terms of the orientation v , rotate a vector from thei
w xlaboratory to the molecular frame i 19 . The range

matrices SŽ i. have principal elements SŽ i. sd s Ž i.
a,b a,b a

with a,bsx, y, z that effectively describe the shape
of a molecule.

The GB heterogeneous interaction energy is ob-
tained, similarly to that for the homogeneous case,
by transplanting the overlap s and strength ´AB AB

in a shifted LJ potential with the further inclusion of
X w xan ad-hoc interaction term ´ 1,11AB

U v ,v ,rŽ .AB 1 2 AB

s4´ ´ n v ,v ´
X m

v ,v ,rŽ . Ž .ˆ0 AB 1 2 AB 1 2 12

=

12sc½ r ys v ,v ,r qsŽ .ˆAB AB 1 2 12 c

=

6sc
6Ž .5r ys v ,v ,r qsŽ .ˆAB AB 1 2 12 c

where m and n are empirical exponents and, as
usual, ´ determines the energy scale. Molecular0

lengths are measured in s units. The ‘minimum0

contact distance’ parameter s determines the widthc

of the potential wells and lies in the range 0-s (c
Ž w� ŽA .4x w� ŽB.4x.min s qmin s r2. We employ herea a

1 ŽA . ŽB.s s s qs , 7Ž .c c c2

the average of the parameters s Ž i. relative to thec
w xlike interactions 11 . By analogy with the standard
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Ž . w x Ž . Ž .Fig. 1. Biaxial GB U thick line and UFF 28,29 –MM thin line energy UU profiles of the pair perylene oblate and planarAB AB
Ž .p-terphenyl prolate for the 18 ‘orthogonal’ configurations described in the text. To aid comparison, the curves are grouped in five plates

Ž . Ž . Ž . Ž . Ž .as: side-by-side A , cross B , tee-1 C , tee-2 D and end-to-end E .
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GB potential, we define the dimensionless interac-
tion term ´

X as

´
X

v ,v ,r s2rT By1 v ,v r 8Ž . Ž .Ž .ˆ ˆ ˆAB 1 2 12 12 AB 1 2 12

where the matrix B is defined in terms of twoAB

diagonal interaction matrices EŽA ., EŽB., one for each
Ž i. Ž Ž i..1r mmolecule, with elements E sd ´ r´ .a,b a,b 0 a

B v ,v sMT v EŽA .M vŽ . Ž . Ž .AB 1 2 1 1

qMT v EŽB.M v 9Ž . Ž . Ž .2 2

The coefficients ´ Ž i., ´ Ž i. and ´ Ž i. are related to thex y z

well depths for the homogeneous interactions for the
aa, bb and cc orthogonal configurations defined in

w xRef. 11 . In particular their ratios are equal to those
of the corresponding well depths. The potential re-

w xduces to the standard Gay–Berne 1 when the
molecules become uniaxial, identical and the param-
eter s ss . Similarly, the potential reduces to thatc 0

w xin Ref. 11 when the two biaxial molecules are
equal. In the case of unlike uniaxial molecules, a
similar potential but with a different interaction

X w xstrength term ´ to that in Ref. 13 , is obtained.
Ž Ž ..A relevant feature of the mixed potential Eq. 6

is that the parameters in U can be computed on theAB

fly using the molecular dimensions s Ž i. and interac-a
Ž i. Ž . Ž .tion terms ´ relative to the AA and BB interac-a

tions. Indeed, for a given pair configuration v , v1 2

and r , these coefficients determine the matricesˆ12

A , B and implicitly the GB parameters s ,AB AB AB

´ and ´
X . There is no need to invoke any moreAB AB

w xor less arbitrary application 15 of the Lorentz linear
average rule for the contacts s and of the Berthelot

w xgeometric mean rule for the well depths 24 for
these non-spherical particles. To see how effective
this is, we have chosen a pair of molecules A,B from
a set with various aspect ratios and we have calcu-
lated UU , UU , UU using a molecular mechanicsAB AA BB
Ž .MM approach. We determined the principal frame
of each molecule diagonalizing its inertia tensor. We

Ž . Ž .then fitted the AA , BB pairs to a biaxial GB as
w xdiscussed in Ref. 11 and we have used these param-

eters to construct a heterogeneous GB potential U .AB

This is compared with UU in Fig. 1 without anyAB

further optimization, in particular of m,n .
In practice we calculate UU at a set of selectedAB

w x‘orthogonal’ configurations 11 which we visualize
representing a biaxial particle i as a box with the a,

b and c faces orthogonal to the x , y and zi i i

molecular axes, respectively. For a pair of unlike
molecules, these are the 18 configurations listed in
Table 1, where we label each ‘orthogonal’ pair with

w xa two-letter code 11 obtained from the names of the
faces perpendicular to the intermolecular vector and
coming in contact as illustrated with sketches in Ref.
w x11 . The label is unprimed if none or two axes of the
first molecule are antiparallel to those of the second
one and primed if one or three axes are antiparallel.
We also choose the first molecule, A, using two

Ž .rules in decreasing order of priority: i an oblate has
Ž .priority over a prolate particle and ii the molecule

with shortest axis has highest priority. Molecular
axes are then assigned using the convention of low-

w xest shape biaxiality of Ref. 11 and adopting right-
handed reference frames. Since our mixed GB poten-
tial U uses only the parameters relative to theAB
Ž . Ž . Ž .AA , BB pairs and a chosen m,n the parametriza-
tion problem reduces to that of homo-molecular in-
teractions U , U already discussed by us in Ref.AA BB
w x11 . In practice, we optimize a selected number of
characteristic features chosen on physical grounds
from energy profiles obtained for the 18 ‘orthogonal’

Ž . Ž †configurations, namely: i the well depth U sAA
n Ž . X mŽ .. Ž .y´ ´ v ,v ´ v ,v ,r ; ii the distanceˆ0 1 2 1 2 12

Ž †corresponding to the well minimum r sAA
Ž . Ž 1r6 .. Ž .s v ,v ,r qs 2 y1 ; iii the soft contactˆ1 2 12 c

Ž 0 Ž .. Ž .distance r ss v ,v ,r ; iv the width of theˆAA 1 2 12

Table 1
The 18 ‘orthogonal’ approaching configurations for two dissimilar

Ž .biaxial particles A,B. The angles v ' a ,b ,g define the relative
orientation of the second molecule with respect to the first one.
Symmetry equivalent configurations are generated for successive
rotations of an angle p of the molecular frame with respect to one
of its axes or by inversion of the intermolecular vector. The

Ž .correspondence rules between heterogeneous oblate–prolate O–P
Ž . Ž .and homogeneous ‘orthogonal’ configurations O–O , P–P as

described in the text are given in brackets. Symmetry-independent
Ž .homogeneous AA configurations are printed in boldface

5 5 5a b g r x r y r zAB A AB A AB A

X X X X X X0 0 0 aa bb ccŽaa ;aa . Žbc ;cb . Žcb ;bc .
X X X0 0 p r2 ab ba ccŽac;ab . Žb a;ca. Žcb;bc .
X X X0 pr2 0 ac bb caŽab;ac . Žbc;cb . Žca;ba .

X X X X X X0 pr2 pr2 ac ba cbŽab ;ac . Žb a ;ca . Žcc ;bb .
X X X

pr2 pr2 pr2 aa bc cbŽaa;aa . Žbb;cc . Žcc;bb .
X X X X X Xypr2 ypr2 0 ab bc caŽac ;ab . Žbb ;cc . Žca ;ba .
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1r6'Ž wŽ .potential well at half height w ss 4q2 2AA c
1r6'Ž . x.y 4y2 2 . The cost function F we use in

fitting is defined as

2N † †c1 UU i yU iŽ . Ž .m AA
F s ÝAA ½4N Uc nis1

2† †r i yr iŽ . Ž .m AA
q

rn

20 0r i yr iŽ . Ž .m AA
q

rn

2
w i yw iŽ . Ž .m AA

q 10Ž .5rn

where all terms with a subscript m refer to the UUAA

profiles to be reproduced. The quantities U and rn n

render each term dimensionless and establish the
relative weight of the interaction energy with respect
to the molecular shape. We have arbitrarily chosen to

w� †Ž .4x w� † Ž .4xuse U smin UU i and r smax r i andn m n m

fixed ms2 and ns1. The sum is extended to the
Žnumber N of energy profiles considered here N sc c

.18 even if some are degenerate.
The comparison between model and reference

heterogeneous MM ‘orthogonal’ energy profiles UUAB

is performed on curves U with the same label.AB

However, since we have 18 ‘orthogonal’ configura-
Ž . Ž . Ž .tions for AB pairs and 12 for AA , BB a corre-

spondence rule has to be established. If both particles
Ž .are prolate oblate the comparison between hetero-

geneous and corresponding homogeneous orthogonal
curves is still between configurations with the same
name. For oblate–prolate interactions we use the
following prescription, starting from 18 ‘orthogonal’

Ž .configurations of two like prolate particles P–P .
For each configuration the label for the correspond-
ing O–O case is found by exchanging y with z andi i

reversing the x axes of each molecular frame. Thei

corresponding configuration for the O–P case is
obtained combining frame 1 from the O–O configu-
ration with frame 2 from the P–P case. Each trans-
formation does not affect the versor r in spaceˆAB

Table 2
Biaxial GB parameters for a selection of prolate and oblate molecules. The optimization was carried out using the procedure described in the

w x w x w x w x w x w xtext. The prolate molecules are: 1 sexithiophene; 2 planar quinquephenyl; 3 planar tetraphenyl; 4 planar terphenyl; 5 pentacene; 6
w x w x w x w x w x w x w xnaphthacene; 7 planar biphenyl; 8 anthracene. The oblate molecules are: 9 porphine; 10 benzene; 11 perylene; 12 pyrene; 13

w x w x w x Ž . Ž) . Ž .benzoquinone; 14 naphthalene; 15 anthraquinone; 16 tetrazine. Prolate oblate molecules labelled with a have an oblate prolate
Ž .interaction biaxiality l i.e., the lowest l is that with ´ and ´ exchanged´ ´ y z

3Mol a l l s s s ´ ´ ´ s 10 =Fs ´ x y z x y z c

Prolate molecules
w x1 0.06 0.20 5.4 3.4 24.2 3.2 10.5 0.7 3.4 1.8
w x2 0.06 0.22 5.2 3.5 21.3 4.1 13.0 1.0 3.5 2.0
w x3 0.09 0.22 5.4 3.5 18.0 3.9 12.1 1.0 3.5 1.8
w x4 0.14 0.28 5.7 3.4 14.3 3.6 10.9 1.2 3.4 1.9
w x5 0.17 0.36 6.2 3.5 14.5 4.1 14.5 1.7 3.5 1.8

Ž) . Ž) .w x6 0.22 0.36 6.2 3.5 12.4 3.7 13.4 1.9 3.5 1.9
w x7 0.27 0.28 5.9 3.3 10.5 3.2 9.3 1.1 3.3 2.1

Ž) . Ž) .w x8 0.36 0.29 6.5 3.3 10.4 3.2 11.7 1.9 3.3 1.9
Oblate molecules
w x9 0.00 0.02 11.4 11.4 3.2 2.2 2.1 13.6 3.2 4.9
w x10 0.04 0.12 6.3 6.5 3.1 1.2 1.0 4.1 3.1 1.6
w x11 0.22 0.25 8.2 10.4 3.3 3.7 2.3 15.7 3.2 2.3
w x12 0.24 0.32 8.1 10.5 3.2 2.5 1.3 11.6 3.2 2.3

Ž) . Ž) .w x13 0.24 0.38 6.0 7.4 3.2 1.5 0.7 4.5 3.2 1.9
w x14 0.26 0.10 6.5 8.2 3.3 2.0 1.7 7.8 3.2 2.2
w x15 0.36 0.14 7.2 10.5 3.2 2.2 1.7 10.6 3.2 2.1
w x16 0.39 0.28 5.3 6.6 3.9 0.9 0.6 2.3 3.3 2.1
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fixed frame. This leads to the correspondence sets
reported in Table 1.

We have chosen to test the procedure using vari-
Ž . Ž .ous elongated prolate and flat-like oblate aro-

matic molecules which are listed in Table 2. First,
molecular geometries were optimized using Macro-

w x w xmodel 25 with the MM2 force field 26,27 . Energy
curves have instead been calculated using a simple
MM potential based on the Universal Force Field
Ž . w xUFF 28,29 which is expected to give a good
estimate of the non-bonding interactions for aromatic

w xhydrocarbons 30 . The optimized GB parameters for
representative prolate and oblate molecules are listed
in Table 2. We now show, as an example, the
heterogeneous potential curves for an oblate and a
prolate molecule, perylene and planar p-terphenyl. In
Fig. 1A–E we plot the heterogeneous ‘orthogonal’
U GB profiles against the reference molecularAB

mechanics UU curves. We see that the heteroge-AB

neous GB curves are similar to the reference ones.
This result is quite comforting, since it should be
remembered that we are comparing curves where full
atomic detail has been taken into account only with
curves where a single interaction centre for each
molecule has been used. The agreement is particu-
larly good for the side-by-side and cross configura-
tions. On the other hand, the end-to-end curves
estimate the soft contact distance within a 10% error.
This difference is acceptable, since these configura-
tions usually contribute to a small extent to the
global interaction in a bulk fluid phase.

An extremely important quantity in the study of
biaxial solutes and mesogens is their molecular biax-

w xiality 31 and its evaluation is seen to be critical,
e.g., for designing mesogens that can yield biaxial
phases. It is apparent, looking at our potential, that
more than one biaxiality can be introduced for a
molecule, e.g., in terms of the biaxiality of SŽ i. and

Ž i. w xE . In particular, the shape biaxiality 11 is
Ž i. Ž i.s ysx yŽ i. 'l s 3r2 11Ž .s Ž i. Ž i. Ž i.2s ys ysz x y

and similarly, the interaction biaxiality
Ž i.y1r m Ž i.y1r m´ y´x yŽ i. 'l s 3r2 .´ Ž i.y1r m Ž i.y1r m Ž i.y1r m2´ y´ y´z x y

12Ž .

For instance we see from Table 2 that some molecules
have high shape but low interaction biaxialities or
vice versa. Even more interestingly, we see that
some molecules behave simultaneously as rods and
disks when both shape and energy are considered.
Thus, naphthacene and anthracene are rod-like
molecules behaving as oblate particles form the in-
teraction point of view. Benzoquinone is exactly the
other way round. This model should then be able to
reproduce excluded volume and attractive features
and its detailed balance might be responsible for
peculiar experimental properties. Similarly, we might

Ž .try to define a shape interaction biaxiality for so-
lute A when dissolved in solvent B. However, it is
clear from the previous equations that such a lŽAB. is
not separable in a product of lŽA . and lŽB..

In conclusion, we have developed a heteroge-
neous biaxial Gay–Berne potential that allows a
direct and efficient computation of the anisotropic
interaction energy between two single site biaxial
particles. This heterogeneous potential has the cor-
rect symmetry and preserves the physical identity of
both molecules. It is then able to distinguish all not
equivalent configurations. There is a negligible addi-
tional computational effort in passing from the ho-
mogeneous to the heterogeneous case since the en-
ergy is computed using a combination of parameters
optimized for the homogeneous case. All possible
interaction schemes are then easily studied simply
combining parameters from tables like those given in
the text. This should make this novel potential partic-
ularly useful in computer simulation studies of mix-
tures and solute–solvent interactions.
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