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Introduction

Biaxial nematic (Nb) liquid crystals (LC) are nematics where the mesogenic molecules

organise with two mutually orthogonal directions of preferential alignment (directors),

while keeping a uniform distribution of centres of mass (see Figure 1). The principal

director n is typical of uniaxial nematics (Nu), while the secondary director m is specific

to biaxial systems which then behave optically as macroscopic trirefringent materials,

i.e. with three different refractive indexes.

The quest for a truly thermotropic Nb has been aptly named “the holy grail” [1]

of LC since it has fuelled experimental and theoretical research for more than 30 years,

starting from the seminal theoretical papers of Freiser [2] and Straley [3]. This is an

interesting scientific case since by relying on idealised models the theoretical predictions

first, and later on the computer simulations, have paved the way for the difficult task of

actually synthesising molecules with the desired mesogenic behaviour. While theoretical

investigations of LC usually lag behind the discoveries of clever and imaginative synthetic

chemists, the specific case of Nb is quite remarkably the opposite. However, it should be

pointed out that neither theory nor simulations have yielded a specific molecular design

but rather have provided reassurance on the Nb not being a priori forbidden. The Nb

phase was not the only “missing link” in the class of thermotropic LC organisations,

and as a side comment we also quote the ferroelectric nematic among the elusive phases

predicted by theory [4] and computer simulations [5] which is yet an open challenge on

the experimental ground. As we shall discuss later, part of the elusivity of Nb may be

due to the fact that many of the molecular features that favour a biaxial arrangement

of the molecules in the fluid nematic also favour their packing in the competing smectic

or crystalline biaxial phases.

The motivations for this search have been certainly widespread, ranging from

purely academic interest in an unsolved scientific problem, to the potential usage of

these materials in faster displays, where in principle the commutation of the secondary

director should give lower response times compared to the conventional twisted nematic

and ferroelectric smectic devices.

At the time of writing a few instances of stable thermotropic biaxial nematics and

their characterisation [6, 7, 8, 9, 10] have been reported. The papers of Luckhurst [11]

and Praefcke [12] and the book of Chandrasekhar [13] also give a critical account of

the early synthetic attempts, while assessment of the more recent achievements can be

found in [14]. These experimental findings are now fuelling a target oriented research

towards other mesogenic compounds, and the implementation of envisaged technological

applications. It should be noted anyway that the experimental identification of

Nb phases is so difficult that an active debate that includes challenging published

results [11, 15, 16] has taken place, and to some extent still is [17]. The role that

confinement, external fields and boundaries [18], or sample preparation [19, 20] may

play in determining the actual observed biaxial behaviour is also questioned. While

ordinary Nu are typically formed by elongated (calamitic, or rod–like), or squashed
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(discotic, or disc–like) mesogens, what molecular shape is more conducive towards Nb

behaviour is far from obvious.

While the search of Nb formed by rod–like and bent–core (boomerang) molecules has

been actively pursued, the actual existence of such phases also from disc–like mesogens

as predicted by theoretical models [2, 3] and simulations [21, 22, 23] is still an open

question, and has received little attention from the point of view of chemical synthesis.

One possibility that has been suggested [24] is that of combining the properties of

rods and discs. The simplest possibility is that of mixing them but is has been found

by theories [25] and experiments [26] that these mixtures tend to phase separate. A

recent experimental paper by Apreutesei and Mehl [27] challenges the past modelling

work in view of considering the role of flexibility and attractive interactions. Even

though LC phase transitions can be driven by entropic effects [4], the detailed balance

of contributions leading to the formation of specific organisations also includes energetic

factors arising from attractive–repulsive interactions between molecules.

The chemistry of synthesised mesogens has been even more far–reaching in scope

than theories, and besides organic compounds with a rigid aromatic core and terminal

flexible alkyl spacers, the ingenuity and rational design of synthetic chemists [28, 29, 30]

has considered as candidate Nb mesogens also dendrimers, silicon organic, and metallo

organic coordination compounds [31], to name a few.

This paper reviews computer simulations of Nb, and it is fair to say that the

field of computer simulations of LC systems has now reached a well established state.

Simulations allow to draw direct relations between specific molecular properties and

macroscopic mesogenic behaviour, and to study the spontaneous formation of liquid

crystalline phases, characterise their structure, and determine anisotropic properties and

responses to external fields. Furthermore, computer simulations automatically account

for the n–body correlations in condensed phases, and as such are useful for validating

the predictions of theories. We should recall, for instance, that the original predictions

for the existence of Nb [2, 3] were based on a simple mean field theory, which is known

to make rather large errors in determining phase boundaries. The progresses in the field

encompass all classes of lattice, coarse–grained, molecular, and atomistic models, and

have been thoroughly reviewed in the last years [32, 33, 34, 35], and also presented in

NATO schools [36] and workshops [37]. This manuscript relies on these general works

and focuses on the specific aspects of simulating Nb systems, which have only partly

discussed in the previous reviews. Section 1 contains a few highlights to the most recent

synthetic and experimental findings related to the search of Nb phases. The order

parameters used to characterise the biaxial ordering are presented in Section 2 along

with theoretical models, while the principal potentials used for Nb systems are described

in Section 3. The remaining Sections are specifically devoted to simulation results, and

are organised according to the symmetry/structure of the simulation models. Section 4

deals with systems with spins and single–site particles of D2h symmetry. Multi–site

potentials for molecules with symmetry C2v or lower, and atomistic models are treated

instead in Section 5. The rod–disc mixtures, which are also candidates for Nb systems
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but still lack conclusive confirmation or disproof, are discussed in Section 6. Some

concluding remarks close the review.

1. Experiments

From a purely thermodynamical point of view, the most frequent experimental scenario

with (virtually) biaxial mesogens is that upon cooling the Nu phase, the free energy of the

underlying smectic/columnar becomes lower earlier than that of the Nb phase, which is

consequently not observed [38] (see Figure 2). The quest for the Nb phase has been then

a synthetic (and modelling) attempt of either destabilising smectic phases, or stabilising

the Nb phase (or both), in such a way that the Nb becomes the equilibrium phase over a

finite temperature range. In this respect theoretical models based on purely orientational

potentials and lattice simulations are not haunted by the formation of a competing

layered or crystal phase before a Nb becomes thermodynamically stable, since they do

not consider positional degrees of freedom (see Ref. [38] for an exception). This has

been turned into an advantage for the identification of the intrinsic molecular properties

(e.g. shape anisotropy) relevant for the stabilisation of an overall Nb organisation, and

for efficiently mapping phase diagrams.

It should be noted that our cartoon of Nb phases in terms of a locally uniform

distribution of the secondary m director might be an exception in real systems.

Some evidences from experimental measurements and computer simulations [39], and

theoretical models [18] are pushing forward a different picture of what the standard Nb

phase might be. According to these sources, biaxial or even polar cybotactic clusters

might be the most common motifs of Nb phases, and the long–range biaxial ordering

would be induced by external perturbations (e.g. a field), or surface anchoring [40], or

shear stress [31]. One of the questions which still awaits to be answered is therefore if the

observed biaxiality is an intrinsic property of the nematic fluid or instead, as pointed

out by Vanakaras and Photinos, a gigantic response of biaxial cybotactic clusters to

the surface anchoring or external field [18]. According to this picture, the discordant

measurements of phase structure for claimed Nb might also have been originated by

the boundary conditions typical of each experiment, and the ensuing different degrees

of alignment of biaxial clusters. These issues are also related to the observation of Nu

phases with cybotactic clusters of Torgova et al. [41], or the spontaneous segregation

into chiral domains reported by Görtz and Goodby [19] and Bruce and coworkers [20].

For this latter example, the formation of organised supramolecular structures seems to

take place above the ordering transition, and it is also depending on the sample history,

hinting to a kinetic rather than thermodynamic effect.

The experimental identification of biaxiality has always proved to be fairly

difficult [16, 42, 43], and still does because of the small magnitude of the transversal

orientational ordering, and the necessity of filtering out the possible perturbations

arising from laboratory setup, and anchoring conditions [43]. Actually, this is an

additional hurdle to cope with for those scientists trying to characterise potentially
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Nb systems. As a matter of fact, most claims of Nb phases published earlier than

2004 seem to have been caused by deceptive experimental evidences, later challenged

by independent measurements of different anisotropic properties.

The first convincing thermotropic biaxial nematic phase has been jointly reported

in year 2004 by Kumar, Samulski and coworkers [6, 7, 8] from bent–core mesogens

based on a mesogenic oxadiazole core [6] with lateral substituents. The phase has

been further characterised by X–ray [7, 44], and polarised microscopy, conoscopy, and

deuterium NMR spectroscopy [8] with more stringent experimental evidences. The

interpretation of these experiments has anyway been questioned [17], but an answer

from the authors [45] dismissed the doubts raised. Even if the Nb for these mesogens

occurs at high temperature (≈ 200 ◦C) these molecules have opened the search of other

systems forming Nb phases under operating conditions closer to room temperature as

needed for standard technological applications. Kumar and coworkers have reported

another class of rigid bent–core mesogens with aperture angle of 90 degrees [46] which

appear to also form Nb phases.

This thermotropic Nb behaviour is far from being the common one for bent–core

mesogens which are often devoid of a Nu phase. Even molecules with a chemical structure

very similar to that of the compounds studied by Kumar and Samulski do not have a

Nb phase but display other interesting properties, like the formation of nematic phases

with cybotactic clusters [41] stable over a quite wide range of temperatures.

Besides the bent–core shaped mesogens, in the same 2004 year, a novel class of Nb

based on organo–siloxane tetrapodes has been found by Mehl, Vij and coworkers [9].

These thermotropic systems have been thoroughly characterised by measuring the

anisotropy of infrared absorbance, with the addition of conoscopic and textural imaging

under polarised light [9], and the temperature dependence of the averaged quadrupolar

coupling constant of a deuterated 8CB solute probe by deuterium NMR [10]. Such

tetrapodes are quite complex and for the time being represent a challenge for a computer

simulation aimed at understanding the molecular origin of their Nb phase, especially in

relation to their high flexibility which makes difficult to define their shape and interaction

anisotropies in terms of simple models.

Severing and Saalwächter [47] have also given evidence of a new class of Nb LC

polymers with lateral mesogens. This is a subsequent development after the seminal

paper of Hessel and Finkelmann [48]. Also new asymmetric bent–core mesogenic

compounds forming Nu and Nb phases have been reported [49, 19]. The differential

scanning calorimetry measurements for these systems support the theoretical [50] and

computer simulation [51, 52] prediction of a second–order transition from Nu to Nb.

Nb phases open the possibility of designing new bistable devices with faster response

than those based on Nu, because the characteristic switching times of the principal and

secondary directors are expected to be very different. The dynamics for the electro–

optical commutation processes of a Nb phases when confined between planar plates

has been measured by Lee et al. [53], and this is the first experimental investigation

studying the issues related to switching experiments of Nb phases. Other experimental
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studies probing biaxial bistability have been performed, for instance the time resolved

characterisation of the commutation of a nematic LC cell submitted to a strong electric

field (to induce biaxiality) between two topologically distinct textures [54], or with

covalently bonded rod– and disc–like mesogens [40]. In spite of these results, the devising

of an efficient bistable Nb devices relying on the switching of the secondary director might

not be easy, and a relevant amount of experimental and computer modelling work still

has to be done.

2. Order parameters and theories

The anisotropic properties of Nb phases are expected to arise from a long–range degree of

orientational ordering along two orthogonal directions, the principal n and the secondary

m directors, while molecular centres of mass have a random distribution in space. The

quantitative assessment of this organisation is conventionally made by measuring (or

computing) suitable orientational order parameters. The symmetry analysis of the D2h

Nb phases identifies a set of four different second rank order parameters that can be

used to fulfil the task.

Unfortunately, there is not a universally adopted convention about the definition

and notation of such order parameters. Over the years a number of equivalent sets

have been used, and the paper of Rosso [55] gives quite a complete list of the notations

employed for these order parameters, and is certainly useful in decoding the various

conventions and comparing the published findings. The two most popular definitions

are those based on a cartesian representation of the order matrices [22, 56], and

those using symmetrised Wigner matrices [21]. The first set arises from a purely

mathematical modelling of the alignment process, and has the (nice) feature that all

order parameters range between 0 (no ordering) and 1 (complete ordering). The second

definition originates from the formal description of static physical observables (e.g.

from NMR, Raman, or fluorescence depolarisation measurements) obtained from the

experimental characterisation of LC phases. This formulation relies on an irreducible

tensors approach [57] where the order parameters are averages values of the Wigner

rotation matrices transforming from laboratory to director frame (and vice versa).

The two sets of order parameters are equivalent and mathematical relations convert

from one to the other. We quote here the second kind of definitions, using the

scalar products between molecular and director frame axes to identify rotations. The

equivalent definition in terms of Euler angles can be found in Ref. [21]. The Wigner

matrices symmetrised for the D2h group of a Nb phase are

RL
m,n =

1

4
δm,evenδn,even

[
DL ∗
m,n +DL ∗

−m,n +DL ∗
m,−n +DL ∗

−m,−n

]
. (1)

The order in a Nb phase, and the mean values of second rank tensorial observables,

can be characterised with the following ensemble averages

〈R2
0,0〉 =

〈
3

2
(z · n)2 − 1

2

〉
, (2)
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〈R2
2,0〉 =

〈√
3

8

[
(z · l)2 − (z ·m)2

]〉
, (3)

〈R2
0,2〉 =

〈√
3

8

[
(x · n)2 − (y · n)2

]〉
, (4)

〈R2
2,2〉 =

〈
1

4

[
(x · l)2 − (x ·m)2 − (y · l)2 + (y ·m)2

]〉
, (5)

where l is the third axis of a (right–handed) cartesian frame defined by the first

two. The molecular axes are instead x, y, and z.

Typical ranges for these order parameters in models and simulations of Nu and

Nb phases are approximatively [0.4, 0.8] for 〈R2
0,0〉 and [0.1, 0.3] for 〈R2

2,2〉 (see ref. [23]

and Figure 9 for an exception). An example of temperature dependence of such order

parameters from a lattice simulation of a Nb is given in Figure 4. It should be noted that

molecular models (both hard and soft attractive–repulsive) usually overestimate these

values, especially at the ordering transitions. Experimental values are usually much

smaller, in particular for the observed biaxialities 〈R2
2,2〉. Differently from molecular

models which offer at most semi–quantitative results, the atomistic simulations with

predictive capabilities [58, 34, 59] can provide reliable estimates of such order parameters

as well as other macroscopic properties.

While widely adopted, the sets of second rank order parameters are not sufficient to

characterise all LC phases, either known or theoretically envisaged. For instance, bent–

core mesogens can form an extremely rich class of LC and their proper characterisation

also requires third rank tensors [4]. Another counterexample is that of ferroelectric

phases where also first rank order parameters are relevant [60, 61].

Prior to computer simulations, laboratory syntheses and experiments, the

theoretical models have provided the general framework background information for

all subsequents studies on Nb systems. The fundamental proof of principle for the

possible existence of a thermotropic nematic phase with three orthogonal optical axes,

was given by Freiser [2] first, and Straley [3] a few years later. By considering mesogens

as rigid board–like particles (sometimes called sanidic) it was found that shape biaxiality

λ (which is zero for cylindrical D∞h symmetry, i.e. rod–like and disc–like particles) is

the physically relevant parameter connected to the excluded volume

λ =
√

3/2
σx − σy

2σz − σx − σy
, (6)

where σx, σy, and σz are the particle dimensions. The mean field models have phase

diagrams where both rod– and disc–like parameterisations show a transition from

isotropic to Nu (conventionally labelled N+ for calamitic, and N− for discotic nematics,

also see Figure 3), followed by a second one to Nb [62]. At the crossover point (also

named Landau point) the molecular biaxiality λ becomes maximum, and the ordering

transition from isotropic leads directly to the Nb phase (see Figure 3). Since this state

point is the one where the Nb phases was expected to appear at the highest temperature,

the synthetic chemists focussed toward assembling mesogenic molecules with an effective
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shape biaxiality falling within this region. At the Landau point biaxiality identifies the

particles as rod–like and disc–like at the same time. However, by using scaled particle

theory and taking into account also translational order Taylor and Herzfeld [38] have

shown how in a fluid of rigid spheroplatelets the range of existence for the Nb phase

becomes extremely narrow (see Figure 2), or even vanishes, when a smectic organisation

can form (as usually observed).

The effect of polydispersity or variable shape in model single–component systems

have been accounted for by either considering a frequency–dependent polarisability

anisotropy [63], or with a gaussian distribution of shape biaxiality modelled as

quadrupolar mass distribution [64]. For two–component systems this effect is also quite

relevant since it may be a pathway for the stabilisation of Nb phases by preventing

demixing in mixtures, and it has been studied theoretically by Ratón and Cuesta [65]

(see Fig. 6), and experimentally by van der Kooij and Lekkerkerker [26]. Another

interesting result is the paper of Biscari et al. [66] which discusses the possibility of

inducing a Nb phase by using curved surfaces with homeotropic anchoring. The recent

analysis of Vanakaras and Photinos [18] suggests us that our view of Nb phases should

be widened to include macroscopic uniaxial systems with large transversal response

where a field–induced biaxiality could be used for bistable devices. From this point of

view, earlier mesogens which have been dismissed as forming Nb phases might still have

interesting response properties due to the presence of locally biaxial cybotactic clusters,

especially if they possess a negative dielectric anisotropy [18]. Over the last few years

other theoretical models and studies of Nb have been published [67, 68, 69, 70, 71]

showing how the field of Nb is quite lively within the scientific community.

Models (and simulations) have been extensively used to study distributions of the

nematic directors and topological defects [13, 72, 73, 74, 42, 75] in Nb. Theories for the

elastic [76, 77, 78, 79, 80, 81, 82, 83, 41], flexoelectric [84, 85], and rheological [86]

behaviour of Nb have also been proposed. However, computer simulations of the

associated mesoscopic coefficients (e.g. elastic constants, viscosities) for Nb have not

been performed systematically. These coefficients are also necessary for the description

of Nb fluids using mesoscopic models, or finite elements methods and further work is

required in the future for the reliable prediction of these relevant quantities.

3. Model potentials

Several classes of potentials have been used in the attempt of modelling samples of

biaxial particles, and it is somewhat mystifying that while most Nb computer simulations

have considered single–site D2h models it has been instead the class of bent–core

mesogens to provide the first experimental evidence of a thermotropic Nb phase. In this

section we review the principal types of potentials in order of increasing complexity,

from lattice to atomistic models, postponing the discussion of the simulation results to

the following sections.

Due to their computational cheapness, lattice models were among the first ones to
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be used by using suitable anisotropic orientational potentials between neighbouring sites.

Among the many lattice models which have been considered in computer simulations,

the most studied so far is the biaxial generalisation to D2h symmetry of the Lebwhol–

Lasher potential [62]

U(ω12) = −ε0
(
R2

0,0(ω12) + 2λ0,2

[
R2

0,2(ω12) +R2
2,0(ω12)

]
+ 4λ2,2R

2
2,2(ω12)

)
, (7)

where ω12 is the relative orientation of neighbouring sites on a cubic lattice. An

equivalent expression can be cast in cartesian form as [51]

U(ω12) = −ε0
(

3

2
Vz,z −

√
6 λ0,2 [Vx,x − Vy,y] + 2λ2

2,2 [Vx,x + Vy,x − Vx,y − Vy,x]−
1

2

)
, (8)

where Va,b = (a1 · b2)
2, and the unit vectors a1, b2 are the axes xi, yi, and zi

of two neighbouring lattice sites. In the case of dispersive interactions the model

parameters λ0,2 = λ, and λ2,2 = λ2 are both defined in terms of a biaxiality parameter

λ. Furthermore, both λ and ε0 are related to the anisotropy of the polarisability

tensor [62, 51]. This is a particular case of the archetypal formulation of Straley [3],

where the parameters λm,n are independent and can be chosen to model more general

interaction schemes. For instance, the mesogenic properties for a different choice

λ0,2 = λ, and λ2,2 = 0 have been studied theoretically and with MC simulations in

Refs. [63, 71]. Lattice models have been thoroughly studied and are now mostly useful

for investigating mesoscopic properties of fairly large samples, like topological defect

distributions and optical properties [87].

A second broad class of potentials used in simulations is that of molecular models,

either purely respulsive (e.g. hard–ellipsoids [88, 22], or hard–spherocylinders [89, 90,

91]), or attractive–respulsive (e.g. Gay–Berne [92]). These potentials allow to draw a

clear link between specific molecular properties, in particular shape and interaction

anisotropies, and collective mesogenic behaviour. For instance since the work of

Allen [22], the hard–ellipsoid fluid has been thoroughly studied considering how the

semiaxes a, b, and c, and the aspect ratios a : b : c determine the phase diagram.

Several off–lattice soft potentials have been derived from the gaussian overlap model

due to Berne and Pechukas [93]. The first one was that of Ayton and Patey [94] who

proposed a generalisation for describing purely repulsive soft biaxial ellipsoidal particles.

By reducing the thickness of a uniaxial 1 : 1 : 3 ellipsoid (which as a hard particle was

known to be devoid of a nematic phase) to a 0.8 : 1 : 3, and then to a 0.4 : 1 : 3

aspect ratio, first a Nu and then a Nb where found (although for a single state point).

Unfortunately the study of this model has been discontinued.

The most studied molecular systems are those belonging to the class of attractive–

repulsive off–lattice potentials obtained by generalising the Lennard–Jones (LJ)

potential to ellipsoidal shape. The standard model of this class is the Gay–Berne

(GB) [92]. The interaction between unlike biaxial particles can be written as [95, 96]

U(r,ω1,ω2) = 4ε0 ε(r,ω1,ω2)
[
u12(r,ω1,ω2)− u6(r,ω1,ω2)

]
, (9)
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where u(r,ω1,ω2) ≡ σc/(r−σ(r,ω1,ω2) +σc), depends on the anisotropic contact

term σ(r,ω1,ω2) parameterised in terms of the three axes σx, σy, and σz of the

ellipsoid, and the orientations ω1, ω2 for the molecules, and the intermolecular vector

r. The anisotropic interaction term ε(r,ω1,ω2) defines the potential well depth and it

is parameterised in terms of the three axes σi, and three interaction coefficients εx,

εy, and εz defining the relative energy for the side–by–side, face–to–face, and end–

to–end configurations of a pair of particles [96] (see Figure 7). Three additional

empirical parameters σc, µ, and ν can be tuned to modify the width and depth of

the interaction wells. The constant ε0 defines the energy scale. The contact term

σ(r,ω1,ω2) approximates the geometrical “contact distance” between two ellipsoids

(see Refs. [97, 98] for a discussion). A similar generalisation of the GB potential to non–

homogeneous biaxial interactions is that of Cleaver et al. [99]. The issues concerning

the approximation of the contact distance for ellipsoids using the recipe of Ref. [93] (i.e.

σ(r,ω1,ω2)) have stimulated the proposal of additional generalisations of the biaxial

GB model like the RE–squared potential of Ejtehadi and Everaers [97, 100, 101], which

is based on Hamaker theory, and that of Paramonov and Yaliraki [102] who have used

the elliptic function approach due to Perram and Wertheim [103]. Both biaxial [95, 96]

and RE-squared [97] versions of the GB potential have recently escaped the realm of

in–house simulation codes to be included into the popular molecular dynamics engine

LAMMPS [104, 105] released under the open–source licensing scheme.

These single–site potentials were initially used to simulate mesogens with board–like

symmetry, but were also combined to model lower symmetry molecules (e.g. boomerang

shaped) in terms of multi–site objects as described later on. In this class of molecular

potentials small attention has been given to including and understanding the role

of flexibility, probably to keep models as computationally cheap as possible. We

now recognise that these neglected contributions when taken into account may also

compensate for the unrealistic density changes across ordering transitions which curse

most simulations of both hard and soft molecular models, and which are not observed

experimentally.

Atomistic potentials account flexibility implicitly, however, the complexity of

candidate mesogens poses a challenge since this modelling requires computational

resources which have become available only in the past few years. In this class of models

the total potential energy is broken down into a sum of intra–molecular terms describing

how the energy changes upon variations in bond angles and lengths, conformational

motions, and atomic positions, with the addition of inter–molecular terms giving non–

bonding and electrostatic interactions. A generic atomistic potential can be written

as

Utotal =
∑

bonds

Kr(r − req)2 +
∑

angles

Kθ(θ − θeq)2 +

∑
dihed

6∑
n=0

Vn [1 + cos(nφ+ γ)] +



Computer simulations of biaxial nematics (rev. Thursday, August 14, 2008) 11

i<j∑
atoms

√εiεj
(σi + σj

2rij

)12

−
(
σi + σj

2rij

)6
+

qiqj
rij

 . (10)

The specific mathematical formulation of the additive terms and the complete

collection of coefficients K, V , σ, ε, and atomic charges q define the force field.

Even if atomistic simulations can provide invaluable details on specific systems,

often hardly or not accessible at all by experimental techniques, the task of correctly

reproducing phase transition temperatures for a given mesogen is to date not trivial,

and this is mainly due to the absence of force fields specifically parameterised for the

purpose. Therefore, prior to performing atomistic simulations, a necessary step is that

of testing if the chosen force field is adequate: for instance dihedral potentials should be

checked as the full conformational space often determines the phase behaviour [106].

In addition, other force field terms may need to be be tuned to match relevant

experimental observables (e.g. density). If these optimisations are not sufficient (see

e.g. [107, 108, 109, 110]), a long and computationally demanding re–parameterisation

procedure is needed [111, 110]. We should also notice that atomistic potentials have been

successfully used only recently [59] even because no convincing Nb had been reported

earlier and molecular structures to start with were not available. From this point of view

computer simulations of lattice and molecular models have been invaluable for studying

the fundamental properties of Nb systems prior to their experimental discovery.

4. Single–site models

The simplest computer simulation models for Nb are the single–site ones where the

mesogenic system is described by a collection of weakly interacting potential centres

with orientational degrees of freedom. The interaction sites can be either fixed on

a lattice or free to move (off–lattice), and can thus represent an uniformly oriented

molecular domain or a single molecule.

Lattice simulations have been the first ones to provide evidences of a spontaneous

thermotropic Nb ordering, starting from the MC computer simulations of Luckhurst

and Romano [112] who used the potential of eqn. 7. The complete phase diagram and

the temperature dependence of the four second rank biaxial order parameters has been

obtained by Biscarini et al. [21] (see Figure 3). These results have been compared against

theoretical mean field predictions to find a semi–quantitative agreement between the two

(see Figure 4). The transition from Nu to Nb has been predicted [50] and simulated [51]

with dispersive models to be of second order. There are anyway theoretical predictions

by Virga and coworkers based on a mean field model that this behaviour is not universal.

Relaxing the parameterisation constraints of eqn. 7 two narrow regions of weak first

order transitions between Nu and Nb, and between isotropic to Nb have been found in

correspondence of a nematic–nematic tricritical point [63, 113, 68] in proximity of the

Landau point (see Fig. 5). Recent dynamic light scattering measurements based on

organo–siloxane tetrapodes [114], and lattice computer simulations [115], support these

theoretical models. Bates and Luckhurst [116, 117], and Romano [115, 118, 119, 120]
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have further simulated several generalisations of the model potential of eqn. 7. Lattice

models are computationally cheap, and taking advantage of this, it is possible to simulate

extensively samples with (sub)–mesoscopic size, and large enough to compute director

fluctuations, tolopogical defects structure, and schlieren textures of confined systems

or free standing films. These are interesting properties because optical microscopy

(either orthoscopy and conoscopy) is often used as a screening technique for quickly

identifying LC phases, Chandrasekhar [13, 72] predicted the two–brushes defects to

be a signature of Nb phases, differently from Nu LC which are characterised instead by

four–brushes defects. Chiccoli et al. [74, 42] have theoretically computed the free energy

difference between two– and four—brushes defects, and produced optical images from

MC computer simulations of a Nb lattice model. Such studies have outlined that the

presence of topologically stable two–brushes defects is not a universal fingerprint of Nb

phases because their appearance is related not only to the degree of biaxial orientational

ordering but also to the magnitude of elastic constants. This is a clear example of the

usefulness of computer simulations in providing a possible explanation for the earlier

claims of Nb mesogens based on deceptive optical measurements.

Moving to off–lattice potentials we quote the seminal MC simulation of Allen [22]

who mapped the phase diagram of a model fluid formed by hard ellipsoids with three

different axes (aspect ratios ranging from 1 : 1 : 10 to 1 : 10 : 10). This was the first

simulation with full translational and rotational degrees of freedom to compare against

the results of theoretical models, and it was a proof of principle that a Nb phase might be

thermodynamically more favourable than a smectic, or solid one. For such hard particle

model the formation of a Nb phase is based on an entropic driving force related to the

excluded volume of ellipsoidal particles. Allen was able to trace the phase diagram with

respect to the shape biaxiality finding calamitic N+, and discotic N− nematic phases,

and also conducted detailed simulations for the Landau crossover shape. In a later

work Camp and Allen [121] studied with higher accuracy the phase diagram locating

the transition points for the prolate parameterisation. The range of shape anisotropies

leading to biaxial nematic phases was found to be very narrow, supporting the elusive

character of this mesophase. Recently McBride et al. [122] performed additional Monte

Carlo simulations of the hard biaxial ellipsoids fluid studying the reliability of the

theoretical equation of state in predicting the isotropic–nematic transition and finding

fairly good agreement.

Repulsive off–lattice simulations have been useful for studying the entropic effects

stabilising Nb phases. However, hard particle models do not consider attractive

interactions which are expected to be important in real Nb [59], and which have been

found to stabilise the Nb phase for aspect ratios closer to those of conventional mesogens.

For instance, uniaxial hard ellipsoids and hard spherocylinders with aspect ratio equal

or smaller than respectively 1 : 1 : 3 and 1 : 1 : 5 do not form nematic phases upon

compression, while soft attractive–repulsive ones do [32].

The effect of attractive interactions have been first considered in a MC

simulations of biaxial ellipsoids [52] modelled with the generalised GB potential [95,
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96]. These simulations have given hints about the competing role of shape and

interaction anisotropies in stabilising the Nb phase, and have shown that a suitably

parameterised off–lattice system with attractive–repulsive soft particles with aspect

ratios 1.4 : 0.714 : 3, and interactions 1.7 : 1 : 0.2, might form a stable thermotropic

Nb phase (see Figure 8). The choice of opposite shape and interaction biaxialities

destabilises the smectic phase which is normally observed below the uniaxial nematic

phase whenever both shape and interaction anisotropies are positive [13, 123]. The

usage of side–by–side interactions stronger than those face–to–face, i.e. giving a negative

interaction biaxility, produces particles with a dual nature: rod–like from the point of

view of shape, and disc–like with respect to interactions [13] (see Figure 7). Virtual

MD experiments [124] have been used to estimate the switching times of the principal

and secondary director of this model Nb [125]. The reorientation of the secondary

director m has been found to be, on average, an order of magnitude faster than that

of n. This kind of direct measurement of a response might be useful for screening

the technological suitability of Nb phases in displays and other devices since in virtual

experiment the setup such as sample shape, pair potential, anchoring geometry and

strength, and coupling to an external field can be controlled by design without a prior

knowledge of mesoscopic response coefficients.

A drawback of all molecular models is that it is not easy to map an idealised

potential with specific parameters into a real molecular structure. For instance, in the

case of the biaxial ellipsoidal particles of Ref. [52], the stronger lateral interactions

may be obtained by synthesising a mesogen with suitable lateral substituents [28]

giving weak bonding (e.g. hydrogen bonding groups), or with a specific electrostatic

charge distribution. The practical realisation of this prescription is anyway not

straightforward. For instance Bruce and coworkers [126] have ingeniously tailored

metallorganic mesogens, although without obtaining Nb mesogens.

Very limited experimental and theoretical work has been done so far for disc–like

Nb mesogens, possibly because only a few systems have been experimentally found to

date to form a thermotropic nematic phase, being the columnar one their most common

anisotropic organisation. In Ref. [23] a first attempt of studying with MC computer

simulations the competition of shape and interaction anisotropies for biaxial GB discs

has been presented. A discotic Nb phase was found for GB particles with opposite shape

and interaction biaxialities, i.e. having face–to–face pair interactions much weaker than

those side–by–side (see Figure 9). The most striking result of these MC simulations was

that the columnar phase was completely suppressed in favour of a nematic fluid stable

over a quite wide range of temperature, and for order parameter values much higher

(〈R2
0,0〉 > 0.9) than those typical of a calamitic nematic phase.

5. Multi–site models

Multi–site potentials allow to model more specifically the effects of molecular shape and

interaction anisotropy of mesogenic molecules. The range of simulated systems is fairly
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large and goes from rigidly connected hard particles to molecular models with charges,

dipoles, and quadrupoles, to fully atomistic models with internal degrees of freedom.

Asymmetric models have received little attention, even though experimentally have been

reported to widen the Nu temperature range [19].

Among board–like models, the papers of Sarman [127, 128] report MD simulations

of systems formed by rigid objects obtained by embedding from 8 to 11 repulsive

GB discs along a line, with aspect ratios similar to those of the hard ellipsoids of

Allen [22]. The compression of isotropic samples of all four model particles gave a

first order transition to Nu phase (either calamitic N+, or discotic N−), followed by

transitions to Nb. Sarman [129, 130] has also estimated some viscosities using Green–

Kubo relations and linear response theory. This is the only computer simulation of

multi–site molecular model reported so far to yield a Nb. In spite of that, multi–

site models have been extensively used to study bent–core mesogens, but generally

speaking most of the simulations reported in literature do not provide Nb (actually

nematic phases are rather exceptional for such class of molecules, and smectic LC are

the typical organisations observed experimentally and in simulations). Since more Nb

mesogens with bent–core shape may be found in the future, it is nonetheless interesting

to overview some of the published simulation results.

The majority of published simulations for bent–core mesogens are based on rigid

models with two anisotropic sites joined at one end. For instance, Camp et al. [131],

and Lansac et al. [132] have reported MC results for hard–core dimers formed by two

spherocylinders with aspect ratios 1 : 1 : 2, and 1 : 1 : 5. Both papers studied the phase

diagram for various apex (or aperture angles) finding Nu organisations for the larger

angles, and isotropic fluids of interlocked dimers for smaller apertures.

Moving to attractive–repulsive potentials, similar results have been obtained with

the GB models simulated by Memmer [133] and Neal and coworkers [134, 135] who

performed NPT MC simulations of rigid bent–core dimers with aspect ratio 1 : 1 : 3 and

various apex angles. The isotropic to Nu transition temperature was found to decrease

reducing the aperture angles. Even for this GB model, the Nu phase disappeared for an

intermediate 170 degrees apex angle. Interestingly, close to the nematic–smectic phase

transition a spontaneous chirality symmetry breaking [136] was reported [133, 134, 137]

to produce organisations related to those predicted by Lubensky and Radzihovsky [4],

or observed by Görtz and Goodby [19]. The presence of a central transverse dipole [135]

suppresses the Nu phase to give transitions from isotropic to smectic phases, and this is

at variance with results from atomistic simulations (see later on). However, two terminal

tilted dipoles embedded into the arms of a three GB bent–core model have been found

with MC simulations to stabilise the Nu phase with respect to smectic ordering [138] (see

Figure 10). No Nb organisations were observed for any of these systems. Interestingly,

Clark and coworkers [139] have studied a three–site zig–zag model observing a rich

polymorphism reminding that of dipolar bent–core models.

The multi–site models of rigidly connected LJ spherical sites simulated by Dewar

and Camp [140, 84] produce results comparable the other bent–core models, but in this
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case the effect of a central transversal dipole seems to favour the Nu phase [84]. A

five–site bent model with terminal flexible chains was also studied [84] to find that both

smectic and Nu phases disappear. The effect of flexibility on the phase diagram, even

though for linear chains, has been throughly studied instead by Galindo et al. [141] with

Gibbs ensemble MC simulations finding that the polymorphism is strongly affected by

the non–rigid model.

To date, the most relevant simulation of multi–site bent–core mesogens has been

that of Peláez and Wilson [59] who have performed the first MD simulation of a real

Nb molecule [7, 8] using a full-atomistic potential including electrostatic interactions

(see Figure 11). In particular, the spontaneous ordering was observed cooling–down an

isotropic sample, and Peláez and Wilson have given evidences regarding the formation

of local ferroelectric domains in the Nb. Atomistic computer simulations are invaluable

since they can help in studying some issues (e.g. flexibility), and the detailed effect

of electrostatic charges as computed from ab–initio calculations on specific molecules

(see e.g. [142]) that would be difficult to tackle with theory or simpler potentials. For

instance, in [59] the same atomistic model devoid of electrostatic charges (e.g. an overall

transversal dipole moment) does not give a Nb phase but, upon cooling–down, a smectic

one. This is again a confirmation that the subtle balance of anisotropic shape and

interaction anisotropy is necessary in mesogenic molecules to stabilise the Nb phase.

The picture resulting from the published simulation work is that there is no general

agreement regarding the optimal apex angle of bent–core mesogens for the stabilisation

of Nu phases, since the results also depend on other specific model features. A certain

bend seems to be necessary to observe a Nu, but the useful range of apertures may

be fairly broad. A large apex angle generally favours the Nu with respect to layered

organisations, while small values have given interlocked dimers (even though Ref. [46]

reports Nb mesogens with 90 degrees aperture). Certain intermediate apex angles

destroy the Nu [131, 134, 135]. To provide a Nb phase a bent molecular shape is not

sufficient, and other interactions terms (e.g. a suitable transverse dipole), or a certain

amount of flexibility may be necessary to lower the symmetry, and/or the propensity

to form ordered layers. To summarise, only atomistic simulations have been successful

so far, and the lack of multi–site molecular models of Nb is a sign that we still do not

know what are the minimal molecular features for obtaining these phases.

6. Mixtures

One of the possible pathways early recognised by Alben [24] as a candidate for

finding Nb systems has been that of using a suitable mixture of rod– and disc–like

mesogens fully miscible over the whole phase diagram. The rationale behind this

strategy was that of creating a mixed nematic system where molecular symmetries

would promote the independent self–alignment of the mesogens along two mutually

orthogonal principal directors (one for the rods, and the other for the discs) producing

a Nb system. This apparently simple picture is deceiving as to date the only published
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example of Nb mixture is not thermotropic but lyotropic [143], and even these findings

have been subject to discussion and challenges [144, 145]. To our knowledge, no

computer simulations have been conducted on lyotropic systems, possibly due to their

complexity, but theoretical models strongly hint polydispersity [65], and rod–disc shape

interconversion [146] as possible mechanisms underlying the Nb behaviour even for

thermotropic mesogens. In particular, the paper of Ratón and Cuesta [65] reports

theoretical phase diagrams showing stable Nb mixtures of uniaxial board–like mesogens

with a 1 : 1 : 5, and 5 : 5 : 1 aspect ratios (see Fig. 6), and a gaussian distribution of

shape.

In spite of the neatness of the suggestion of Alben [24], the practical realisation of

a thermotropic Nb phase of mixed rod– and disc–like molecules has always proved to

be difficult both on the experimental [26] and modelling grounds [147, 148, 149, 150,

151, 152, 153, 154, 155]. The common reason behind this failure is that when both

orientational and positional degrees of freedom are considered the ordered phases show

a thermodynamic tendency to demix.

It is not surprising that one of the few computer simulation successes has been that

of lattice models, like those of Hashim et al. [156] where phase separation could not take

place by design. It should be noted anyway that when particle exchange moves between

the two distinct interpenetrated sub–lattices were included, a phase separation did take

place also in this model system.

Similarly, almost all attempts made to simulate a biaxial rod–disc mixtures with off–

lattice models have lead to phase separations as long as an ordering transition from the

isotropic (mixed) phase set in. The majority of studies have been performed with hard

particles, like the Gibbs MC simulations of Allen, Frenkel and coworkers [25], where

only extreme aspect ratios ( 1 : 1 : 15 with 15 : 15 : 1, and 1 : 1 : 20 with 20 : 20 : 1)

appeared to be compatible with a mixed phase of rod– and disc–like particles. Camp

and Allen [157] have also simulated fluid mixtures of hard uniaxial ellipsoids with smaller

aspect ratios 1 : 1 : 10 and 10 : 10 : 1 and composition 0.5 and 0.6. They have observed

I, N, and Nb, and but have not explored higher density regions of the phase diagram to

address the competition between a Nb phase and demixing. One possibility to overcome

these difficulties would be that of enhancing specific rod–disc interactions [147, 149].

The aspect ratios typical of standard mesogens, when considered as hard rigid particles,

are predicted by all theoretical models to produce demixing. This behaviour has been

explained in terms of entropic effects related to the excluded volume of the mesogens,

and their ratio [158, 159]. The mixed ordered state has higher mixing and orientational

entropies, while the separated phases gain in translational entropy. As it comes out, for

systems with not extremely large aspect ratios, the latter contribution is dominant.

By using a theoretical model Camp and Allen [157] predict a symmetric phase

diagram with respect to mole fraction, but forecast that using additional virial

coefficients this may become asymmetrical. This has been specifically addressed by

Vanakaras, Bates, and Photinos [160] which have studied by MC simulations and theory

phase separation in mixtures of perfectly aligned hard boards with rod–like shape but
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different aspect ratios. The idea the three authors propose is that of disfavouring

the smectic and crystal phases by mixing particles with similar breadth and width,

but incommensurable lengths. This strategy also enhances miscibility and lowers the

minimum aspect ratio necessary to stabilise a Nb. Another relevant result is that the

most favourable concentration for observing a Nb system is not the standard equimolar,

but instead a 0.3 mole fraction of the longer mesogen (see Figure 12).

Besides using specific rod–disc interactions, another strategy for overcoming phase

separation in mixtures may be that of using molecules with both rod– and disc–like

mesogenic units joined by a flexible alkyl spacer (the so–called shape amphiphiles [161]).

After the work of Fletcher and Luckhurst [162], other molecular design concepts have

been explored [162, 163, 161, 164, 165, 166] obtaining Nu but not Nb. So far, the

mesogen with closest resemblance to the theoretical cartoon of joined mesogens is the

one of Kouwer and Mehl [164]. Relying on this picture Bates and Luckhurst [167]

have characterised extensively a lattice model with rods and discs at the same sites

(completely overlapped sub–lattices) by using MC simulations. The effect of a flexible

spacer has been modelled via a coupling between the rod and the disc at the same

lattice site, to find from the simulations that the shape of the two–component phase

diagram is quite modified by the strength of this interaction. Unfortunately, this lattice

model with overlapped sites can not account for the segregation effects of rod and disc

moieties observed experimentally [166, 165] and which may be interesting for other

nanotechnological applications (although not for Nb). Rod–disc dimeric systems have

also been studied with theoretical models [168], and experiments in presence of an

electric [40] or magnetic [169] field. In the case of Ref. [169] a uniaxial discotic nematic

was induced, while in [40] a field–induced Nb phase was achieved.

Considering all the previous modelling work, the findings of Apreutesei and

Mehl [27] of completely miscible disc– and rod–shaped mesogens in the nematic phase

are quite important since they are at variance with the theoretical predictions which

always doom the mixed phase with the nemesis of demixing.

Attractive–repulsive off–lattice models have received small attention, and the

question which choice of shape and interaction biaxialites can prevent demixing still has

no answer. Also the effect of weak bonds between unlike particles [149], and flexibility

have not been studied in detail by theories, and a model of miscible rod– and disc–like

mesogens with monodisperse shape distributions has never been put forward.

Concluding remarks

The field of Nb phases still poses many unanswered theoretical and practical questions,

and besides experimental investigations there is large scope for modelling and computer

simulations. Taking into account recent experimental results, our current view of the

Nb phase, mostly derived from early theoretical and simulation models, might be too

narrow and idealised. Rather than considering as Nb only nematic LC systems with

spontaneous macroscopic biaxial ordering, we might broaden the classification to also
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include overall uniaxial systems with local biaxial or polar cybotactic clusters which

could be converted into a Nb by a suitable weak perturbation, like a surface treatment

or an external field.

If the nature of Nb organisations is still not completely unravelled, on the molecular

side we still do not know exactly what are the minimal features necessary to be accounted

for in model potentials for obtaining a Nb phase. Electrostatic interactions, flexibility,

and polydispersity are important ingredients which, along with shape anisotropy, may

help in stabilising Nb phases against freezing, or layering, or demixing.

Besides contributing in clarifying these issues, the future impact of Nb computer

simulations relies on their ability in helping chemists in designing candidate mesogens

(e.g. by using atomistic models) to predict LC properties prior to the actual synthesis,

and in contributing to the design of model devices (e.g. with lattice and molecular

models) in view of a technological deployment of Nb materials. The achievement of

these ambitious goals will require improving model potentials, predicting mesoscopic

coefficients in bulk and confined environments, and devising efficient procedures for

virtual computer experiments of responses.
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Figure 1. Detail of a Nb phase obtained from the MC simulations of biaxial GB
ellipsoids of Ref. [52], and showing the principal n and secondary m directors. The
two snapshots are relative to the same sample observed along l [plates (a), and (b)],
and along m [plates (c), and (d)].
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ratio, from the theoretical spheroplatelets model of Ref. [38]. First and second order
equilibrium curves are plotted as continuous and dashed lines. Coexistence regions are
shaded. (adapted from Figure 4 of Ref. [38].)
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Figure 3. Phase diagram, with respect to dimensionless temperature T ∗ and shape
biaxiality λ (see eqn. 6), from the MC simulations of Ref. [21] using a 10 × 10 × 10
square lattice and the potential of eqn. 7. First and second order equilibrium curves
are plotted as continuous and dashed lines. (adapted from Figure 2 of Ref. [21].)
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Figure 4. The average order parameters 〈R2
m,n〉 (see eqns. 2–5), plotted against

dimensionless temperature T ∗, for a shape biaxiality λ = 0.3 of Figure 3 (adapted
from Figures 3 and 4 of Ref. [21].)
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Figure 5. Phase diagram, with respect to the dimensionless temperature T ∗ and shape
biaxiality λ (see eqn. 6), from the theoretical model of Ref. [113]. First and second
order equilibrium curves are plotted as continuous and dashed lines. The tricritical
and triple points are indicated as a circle and a square. (adapted from Figure 2 of
Ref. [113].)
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Figure 6. Phase diagram, with respect to the dimensionless number density and mole
fraction x of the rod–like mesogen, for a mixture of polydispersed uniaxial rod– and
disc–like boards with aspect ratios 1 : 1 : 5 and 5 : 5 : 1 from the theoretical model of
Ref. [65]. First and second order equilibrium curves are plotted as continuous and
dashed lines. Coexistence regions are shaded. (adapted from Figure 2 of Ref. [65].)
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Figure 7. The dimensionless U∗ = U/ε0 GB potential profiles for a pair of biaxial
ellipsoids in the face–to–face (curve a), side–by-side (curve b), and end–to–end (curve
c) configurations [95]. The parameters σx = 1.4, σy = 0.714 and σz = 3 (all in σ0

units), and εx = 1.7, εy = 1 and εz = 0.2 (all in ε0 units) are those of Ref. [52].
Empirical parameters µ = 1, ν = 3, and σc = σy. Dimensionless distance r∗ = r/σ0.
(adapted from Figure 2 of Ref. [52]; we note that the value εy = 1.2 given at page 5975
of Ref. [52] was misprinted, and should be instead εy = 1.)
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Figure 8. Average order parameters 〈R2
m,n〉 [plate (a)] from the NPT MD simulations

of the model biaxial rod–like GB mesogen of Ref. [95, 96], and snapshot [plate (b)] of
a Nb phase formed by 65536 elongated biaxial GB ellipsoids at T ∗ = 2.8 and P ∗ = 8,
with 〈R2

0,0〉 = 0.78, and 〈R2
2,2〉 = 0.22. Sample viewed along the m mesophase director.
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Figure 9. Average order parameters 〈R2
m,n〉 [plate (a)] from the NPT MD simulations

of the model biaxial disc–like GB mesogen of Ref. [23], and snapshot [plate (b)] of a
Nb phase formed by 8192 squashed biaxial GB ellipsoids at T ∗ = 2.4 and P ∗ = 8 vith
〈R2

0,0〉 = 0.95, and 〈R2
2,2〉 = 0.27. Sample viewed along n mesophase director.
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Figure 10. Average order parameters 〈R2
m,n〉 [plate (a)] from the NPT MC simulations

of the model bent–core GB mesogen of Ref. [138], and snapshot [plate (b)] of a Nu phase
formed by 1000 three–site GB particles with two terminal dipoles at dimensionless
temperature T ∗ = 3.5 and pressure P ∗ = 10 and 〈R2

0,0〉 = 0.57, and 〈R2
2,2〉 = 0.03.

Sample viewed from a direction perpendicular to the n mesophase director.



Computer simulations of biaxial nematics (rev. Thursday, August 14, 2008) 31

Figure 11. Snapshot of a bent–core Nb phase from the MD atomistic simulations of
Ref. [59] showing the formation of ferroelectric domains with opposite polarity. (Image
courtesy of Prof. Mark Wilson.)
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Figure 12. Phase diagram, with respect to the dimensionless reduced density and
mole fraction x of the longer mesogen, for a two–component mixture of hard–body
biaxial board–like particles from the theoretical model of Ref. [160]. All equilibrium
curves correspond to second order transitions. (adapted from Figure 3 of Ref. [160].)




