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We discuss the reorientation of a cylindrically symmetric probe in a biaxial orthorombic 
medium, such as a biaxial nematic. We write down and solve for the first time the rotational 
diffusion equation for a rod-like or disc-like uniaxial probe reorienting in a medium of biaxial 
symmetry. We calculate first and second rank correlation functions both in the uniaxial and 
biaxial phase, giving the possibility of following the evolution of dynamic observables of interest 
(e.g. spectral densities) through the uniaxial-biaxial phase transition. Nonperturbative and 
approximate analytical solutions are provided. 

I. INTRODUCTION 

Smectics of biaxial symmetry have been known for a 
long time and biaxial phases of nematic liquid crystals, that 
were first theoretically predicted,im3 have recently been 
found experimentally in lyotropics,4 polymer liquid crys- 
tal@ and low molar mass thermotropics.7-9 There is now 
a steadily growing number of mesogens leading to the for- 
mation of biaxial nematic phases.” Indeed a number of 
properties of these systems have been studied, such as their 
macroscopic elastic,“P’2 flo~,‘~~~~-*~ field alignment16 be- 
havior. Experimental investigations of lyotropic biaxial 
nematics have involved in particular optical,‘7P18 deuterium 
NMR, ‘9P2o x-ray2’ studies, often with the purpose of estab- 
lishing phase biaxiality, while comparatively little has been 
done on thermotropic systems. As more experimental sys- 
tems become available it seems important to provide the 
tools for a molecular interpretation of dynamic spectro- 
scopic properties, e.g., NMR,22 fluorescence depolariza- 
tion,23,24 IR and Raman. This involves calculating the 
orientational correlation functions 26-28 and spectral densi- 
ties needed to analyze experimental data starting from a 
chosen model for molecular motion. In practice one of the 
most useful and successful models in describing the reori- 
entation of solute molecules larger or comparable in size 
with those of the solvent is the diffusional model 2s-41 that 
we shall adopt here. 

The diffusional model is based on the assumption that 
the molecular reorientation can be considered as a stochas- 
tic Markov process that evolves in time as a sequence of 
small angular steps caused by collisions with the surround- 
ing molecules as well as under the effect of torques origi- 
nating from the long range order of the liquid crystal.2941 
This process was studied by Favro29 and first introduced in 
the study of reorientation in liquid crystals by Nordio and 
co-workers,32 who considered cylindrical molecules in 
uniaxial phases. As far as the diffusional model is con- 
cerned the dynamic features of the probe molecule are de- 
scribed by its rotational diffusion tensor D, normally de- 
fined in the molecular frame. The ordering effect of the 
solvent, when present, is represented by an effective aniso- 

tropic potential. To the present time a number of models of 
increasing complexity have been studied; even if we limit 
ourselves to rigid molecules, as in the present paper, the 
reorientation of molecules with biaxial ordering matrix and 
uniaxial diffusion tensor in uniaxial phases has been con- 
sidered.35-39 More recently this treatment has been gener- 
alized to molecules with diffusion tensor of arbitrary sym- 
metry~36AW1 

A description of the rotational diffusion of the mole- 
cule based on a laboratory frame representation, in terms 
of the anisotropic viscosity of the surrounding has also 
been discussed. 42 The more gen era1 combination of aniso- 
tropic rotation and anisotropic viscosity is very complex to 
treat and has so far not been solved completely even 
though some models exist.42P43*6( If anything, this approach 
is going to be even more complicated in biaxial nematics 
where up to sixteen independent viscosity coefficients are 
predicted to exist.14 Here we have chosen to define the 
diffusion tensor in the molecular frame, since in any case 
our interest is in discussing for the first time the conse- 
quences of introducing mesophase biaxiality, keeping the 
treatment at the same level it has been employed for uniax- 
ial phases, rather than refining a description of diffusion in 
a more conventional and simple solvent. 

The application of the diffusion model to orthorombic 
biaxial phases involves setting up and solving the diffusion 
equation for a probe molecule reorienting in an appropriate 
biaxial and uniaxial effective potential. Since the biaxial 
phase has a lower symmetry than the usual cylindrical 
nematic one, it is particularly interesting to study those 
correlation functions that are different from zero in the 
biaxial and vanish in the uniaxial phase. The effect of phase 
change can to some extent be monitored using a simple 
uniaxial probe, for instance deuterated benzene in a deute- 
rium NMR study4’ and here we shall often concentrate on 
this example. In general we wish to examine what dynamic 
indicators (e.g. correlation times and spectral densities) 
can be associated to the uniaxial biaxial phase change using 
various techniques. Thus we shall present a rather exten- 
sive selection of first and second rank correlation functions. 
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Molecules that tend to align with their symmetry axis par- 
allel or perpendicular to the director may be influenced in 
a quantitatively different way by biaxiality simply because 
of geometric factors. For instance if we consider a biaxia14’ 
order parameter 9e( go) E J3/8(sin2 p cos 2a) this will 
be, everything else being the same, smaller when the mo- 
lecular axis aligns in such a way that fl is close to zero and 
enhanced if B tends to be close to 7r/2. Similar consider- 
ations will also hold for dynamics, and since the effect of 
these geometric factors is not trivial to predict quantita- 
tively we have considered two limiting cases, where the 
symmetry axis tends to be parallel (perpendicular) to the 
director, in the sense that (P2) > 0 ( (P2) < 0). This is the 
typical situation obtained for a rod-like or disc-like probe 
and we shall name in this way the two cases, even if one 
cannot exclude that the same situation is obtained for dif- 
ferently shaped probes. Since approximately disc-like and 
rod-like probe molecules are normally used in the different 
spectroscopic methods we give results for both these pro- 
totype cases. 

Our main attack to the problem is nonperturbative: We 
express the diffusion equation as a matrix representation in 
a sufficiently large basis set of Wigner rotation matrices46 
and solve the diffusion problem by diagonalization of the 
diffusion matrix33V35V4’ as discussed in the next sections. 
The calculations are performed at a set of temperatures in 
the biaxial and uniaxial phase by suitably relating the ef- 
fective potential of the probe to that of the liquid crystal 
solvent undergoing the phase transition. 

We also derive an approximate analytical solution for 
the rotational diffusion correlation functions, and we ex- 
press the first derivative of the first and second rank diffu- 
sional correlation functions in closed analytical form. This 
approximate solution has not to our knowledge been used 
before and is here adopted for the problem of a uniaxial 
probe reorienting in a biaxial phase. Other approximate 
solutions for the diffusion problem have been presented in 
the literature37’39P47V48 for simpler cases. Thus we have also 
compared our results, in the limit of diffusion in a uniaxial 
phase, with one of these earlier used approximation.48 The 
results using the new approximation are also compared to 
those obtained from the numerical solution on both sides of 
the uniaxial-biaxial phase transition, testing when it is suf- 
ficient to use the simple analytic approximation rather than 
treating the full diffusional model. While a full numerical 
study is given for a selected value of molecular biaxiality, 
the analytical approximations show directly the depen- 
dence on the anisotropic potential, the order parameters 
and the diffusion tensor anisotropy. Thus they are very 
useful in allowing an easy extension of the results to dif- 
ferent values of these parameters. 

II. THEORY 

A. Correlation functions 

We are interested in dynamics experiments that probe 
the correlation functions of some relevant single particle 
properties A, B that we assume modulated by molecular 
reorientation. By writing the laboratory fixed spherical 

components of these properties in terms of their counter- 
parts in a suitable molecular frame with orientation given 
by a collection of Euler angles o= (c@,r) (Ref. 46) one 
has 

= 1 (D~~(0)D~:R,(t))A~~~B~~* 
n,d 

= 2, &f;;:nn.(t)&&Bk~*> 

with D;:(t) = Dkz(w,) a Wigner rotation matrix46 de- 
pending on the angles connecting the two frames at time 

t and +~~~,,, (t> an orientational correlation function. 
The number of potentially nonvanishing and of inde- 

pendent correlation functions is limited by the symmetry of 
the mesophase and by that of the observed (“probe”) mol- 
ecule.49 Here we shall assume cylindrical symmetry of the 
probe molecule, while the mesophase can go from isotropic 
to uniaxial to biaxial. 

In the simplest case of an isotropic liquid the require- 
ment of invariance for an arbitrary rotation of the labora- 
tory frame yields the constraint that only relative orienta- 
tion correlation functions should be present (see, e.g. Ref. 
50). Thus only correlation functions 
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U&W)= c d;q:,tW 4 
can be nonzero. Notice in particular that we have no cou- 
pling between properties of different rank. 

In a uniaxial phase a rotation about the director, as- 
sumed to be the 2 laboratory axis, should leave the system 
invariant. If the probe molecule has effective cylindrical 
symmetry a rotation around the z molecular axis should 
also leave the system invariant. Thus the potentially 
nonvanishing correlation functions are5’ 

4 
LL’ mm,nn,= (D~,(O)D~;~,(r))6,~,S,,, 

G rpki’, (3) 

where we have removed unnecessary subscripts. In liquid 
crystals we do not have a dependence on the relative ori- 
entations only. An immediate consequence is that as a sys- 
tem undergoes a transition from isotropic to nematic, the 
number of independent correlation functions becomes 
much higher than in an isotropic fluid. We also have that 
certain couplings between different rank properties can 
now be admissible. A new increase in the number of cor- 
relation functions takes place if the mesophase, e.g. by fur- 
ther cooling, becomes biaxial. The first new effect predicted 
is the possibility of observing correlation functions with 
m#m’. Here we deal with biaxial DZh mesophases and 
application of group operations as well as the use of stan- 
dard properties of Wigner rotation matrices49 gives 

J. Chem. Phys., Vol. 99, No. 8, 15 October 1993 



6182 Berggren, Tarroni, and Zannoni: Uniaxial probes in biaxial liquid crystal phases 

#;s,w &~:&p)6,r, aP(wll4 
at =-LD[ L+L$+(o,lof), (8) 

=(-)L+L’ LL’ 
4-,+,(t) (44 where L = ( L, , L,, , L,) is a dimensionless angular momen- 

tum operator, and D is the diffusional tensor, which we 
take to be diagonal in the molecular frame where the or- 
dering matrix is also diagonal. Assuming cylindrical sym- 
metry we have components DI , the diffusion coefficient of 
the z molecular axis, describing the “tumbling” of the mol- 
ecule and Dll related to the “spinning” of the molecule 
around the molecular z axis. We shall also use the param- 
eter 7 which describes the anisotropy of the diffusion ten- 
sor, expressed as the ratio 71~ Dll / DI . We now obtain the 
following expression: 

=( -)L+L’--m--m’ 
QgL,(t) (4b) 

=(-)m+m’ LL’ 4-,-,~-,(~). (4) 

Since we assume a stochastic Markovian process, the ori- 
entational correlation function can be written as 

&fj&) = do&~Pbo) D;:ho> 

xPbol~dD~:,b), (5) 
where P( w. 1 wt) is the conditional probability of finding a 
molecule at w at time t if the orientation of the molecule 
was o. at t=O. The equilibrium probability, P(o) can be 
expressed as 

exp[ - U(o)/kJJ 
p(w)= J do exp[ - U(o)/k$] 

exp[ - WO)/~iJl 
=Jcio exp[ - U(a,P)/kBT] ’ (6) 

where kB is the Boltzmann constant and T is the temper- 
ature. U(w) is the potential of mean torque acting on the 
probe particle, 51 which has a sym metry determined by that 
of the particle and of the mesophase, as the distribution 
P(o). In our case the molecule is assumed uniaxial and 
there will not be any dependence of the Euler angle 7, i.e. 
U(w) = U(a, 8),50 as written in E.q. (6). 

The explicit form of the effective anisotropic potential 
U(o) in the biaxial phase is obtained by a separate molec- 
ular field treatment,“3’51-53 but for the present time it suf- 
fices to expand it in Wigner matrices as suggested by sym- 
metry considerations 

T= g a.&$(a,8>. (7) 

Notice that in the same way the effective potential of a 
biaxial molecule in a uniaxial phase can only depend on the 
Euler angles p and y,54y55 and not a, as is the case already 
treated in Ref. 41. 

If the molecular reorientation takes place through a 
sequence of small angular steps the evolution of the con- 
ditional probability, P(oo 1 wt) can be described by an 
equation that is local in angular space and in time, i.e. a 
differential equation. For a diffusion process35 this evolu- 
tion equation is 

i amoId) 
5 at =-[ L:+L,(L,~)]P(cool~t~ 

- [ L;+L,( Ly~)]PWr) 

@a) 

=r+P(ooIwt) (9b) 

where the diffusion operator IT is introduced. The diffusion 
operator as written here is not symmetric because the an- 
isotropic weighting of orientations existing in the me- 
sophase but can, e.g. for the purpose of numerical calcula- 
tions, be symmetrized by the similarity transformation:33’35 

k = p- 1/2rpl/Z (loa) 

(lob) 

where P is the equilibrium distribution already introduced, 
the nabla operator V2= Lt+ L;+ q L: and L, = L, 
f iLy is the angular momentum step operator. 

The application of this transformation allows rewriting 
the diffusion equation in its symmetrized fornn41 

i a&do 14 - 
DI at =&&-dt). (11) 

Fe symmetrized form of the conditional probability, 
P( o. I wt) is in turn defined as 
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P(w,l wt) =exp 
U(w) ( 1 2k P(o0ldexp 

B ( u(oo)) 
-2k 

B (12a) 
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studied by mean field theory1’3’5’-‘4 and by computer sim- 
ulation.53’56 We can now introduce the unitary eigenvector 
matrix ?’ which diagonalizes the self-adjoint diffusional 
matrix ii”, 

The correlation functions are written in terms of the sym- 
metrized quantities as 

Q:$,w = dw&&,b,,D~:~W 
XP1’2(“o>P1’2(w)i)(ool~~). (13) 

The symmetrized diffusion Eq. ( 11) is given a matrix rep- 
resentation in a basis of normalized Wigner matrices,41 
g:“(u) = Jzlr.+‘j--TDk,,(u), by expanding the sym- 
metrized conditional probability &w. 1 wt) 

h%l4 = & Gmb-M)~;,(@). (14) 

The expansion coefficients, CLmn, are evaluated with the 
initial condition 

L* cLmn(~O9o) =~f&cfJo), (15) 

which in turn ensures that 

Ii(,0l00) =S(o-00). (16) 

By substituting Eq. ( 14) in Eq. ( 1 l), multiplying both 
sides on the left by gk::( w ) and integrating over w we 
obtain a system of linear differential equations 

; C!(t) &2(t), (17) 
1 

where & is a matrix factorized in blocks labeled by n. This 
is because the potential is not dependent on the angle y and 
there will not be any co!pling between terms with different 
n, thus (~")L~rn~,~rn~R~~rn'n',~rnr~~~, 

@> L'm',Lm= 
s 

dwc@;:*,(o)fe@;,(w). (18) 

In Appendix A we write down explicitly the matrix ele- 
ments originating from the different operators contributing 
to the diffusion operator. The important case of a potential 
containing only second rank interactions is also presented. 
This expansion is of importance because the second order 
interactions are the simplest meaningful ones and are more 
amenable to theoretical treatment. Indeed they have been 

*gin = $tpn 9 (19) 

where f” is the diagonal matrix of the eigenvalues of I?‘. 
The formal solution is 

Cn(f)=%vD~ qt”)TC”(o). (20) 

Considering the matrix elements and substituting the zero 
time coefficients in Eq. ( 15) we obtain 

Gp,(~oJ> = ; I, mJp,KefD~ %i”)J’,~,K~;~ho), 

(21) 

where the single index K is used to label the eigenvalues of 
the diffusional matrix, I?‘. We now use the solution of the 
differential equation to rewrite the expression of the sym- 
metrized conditional probability given in Eq. (14) using 
un-normalized Wigner matrices 

Q(~olot~=~~ g J;, &m&m 

x (X *9 ).Jp,Ke tDl qiqppn 

x d,co)~:;(,). (22) 

When t+ 03 the unsymmetrized conditional probabil- 
ity reaches the equilibrium value, according to the asymp- 
totic condition 

limP(woIwt) =P(w). (23) 
t-m 

All the exponentials in Eq. (22) decay to zero at infinite 
time except for the one corresponding to the zero eigen- 
value, 4. The long time behavior of the symmetrized con- 
ditional probability, Eq. (12), is then, according to Eq. 
(22) and Eq. (23), obtained as 

lim&woIwt) 
t-m 

=P”2(oo)P1’2(w) 

=$J,, yG,,, mm 

(24d 

,. * 
x (~>J’~~p”,O(~)J~~~~p’“,O ~~,Cw,~~~Cw,,. (24b) 

It is now possible to rewrite the correlation function, Eq. 
( 13 ), using the expressions of the conditional probability 
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given in Eq. (22) and Eq. (24b). The final expression for 
the correlation function of a uniaxial molecule undergoing J(t:jnm,($) = c A~~LB$&S,,nt 
rotational diffusion in a medium of biaxial symmetry is 

ml’ 
written as a sum of exponentials: 

4 ;$,ct) 
for a uniaxial probe. The correlation functions can be eval- 
uated in terms of eigenvalues and eigenvectors of the dif- 
fusion matrix as we have discussed. A typical case where 
spectral densities rather than correlation functions enter is 
in the description of fast motion ESR32Y33 and NMR22 ex- 
periments. In this last case L= L’ =2 and A= B is implied 
and the notation is accordingly simplified. We estimate the 
real part of the integral in Eq. (28) and write the tensor 
components in the molecular frame in terms of the princi- 
pal component A?’ using the small Wigner matrices 
d;,(9), where 9 is the angle between the molecular z axis 
and the principal z axis of the tensor A, which is assumed 
to be cylindrically symmetric. The spectral densities for a 
uniaxial probe are then given by 

xC( L,J’,J”‘;m,-p’)C( L,J’,J”‘;n,-n) 

xC( L’,J,J”;m’,-p)C( L’,J,J”;n,-n) (254 

z ; (b~L,:,)&~~~dK, (25b) 

where the result of the integrals including three Wigner 
rotation matrices have been expressed in terms of Clebsch- 
Gordan coefficients, C(A,B,C;d,e).46v’7 In the calculations 
we have rewritten Eq. (25a) in a way that is more conve- 
nient from the point of view of programming,41 that is, 

4 A;,,(t) = 5 etDl G( g ( VL’“‘“),(t”),,) 

x J2i, wLmn)Ppp’(hr’p,K 
( 

(26) 

where we have introduced the vectors 

L+J' 

( VLmn)ppt = ( - )P += ,"= ZmJP,& 

X C( L,J’,J”‘;m,-p’) 

x C( L,J’,J”‘;n,-n) (i?)Jw,m+;O . (27) 

By handling the rotation of the vectors VLmn and VL’m’n at 
the same time as the diagonalization58959 of the matrix $ it 
is possible to avoid the explicit manipulation of the eigen- 
vectors matrix, %” as discussed in Ref. 4 1. 

6. Spectral densities 

The spectral density J(t:km,(Cj) as a function of an- 
gular frequency 6 is given by a sum of Fourier-Laplace 
transforms of the correlation functions, Eq. ( 1) : 

J,,,(G) =A2’Ai” c d2,(9)d2,(9) 
R 

(b2,2,,,)K(a:mJK 
x5 ( 2,2,&+G2 * a 

(29) 

In the calculations presented later on we have considered 
in particular the case of 6=0, appropriate, e.g. to a C-D 
bond parallel to the long axis and that of 6 = 7r/2 relevant 
to the case of a C-D perpendicular to the probe symmetry 
axis, as in perdeuterated benzene. 

The zero frequency spectral densities are obviously re- 
lated to correlation times. These are obtained by integrat- 
ing the corresponding correlation functions over time after 
subtracting out the long time plateau, if any: 

LL' 
7 mm'n 

= 
s 

m [t+&‘,,(t) -O;:t,C oo > Wt. 
0 

(30) 

Even though the detailed information about the evolution 
in time is lost they are of importance, because they are 
often the only quantities to be determined by experimental 
techniques. The easiest way to perform the integration, 
knowing all the eigenvalues and eigenvectors from the cal- 
culation of the correlation function, is to make the follow- 
ing summation picking out the zero eigenvalue, if 

#;5;$,( @J )zo 

LL' 
r mm’n = ;' ;$:n;K: (&f;;,JK#O. 

mm’n K 

111. ANALYTICAL EXPRESSIONS 

(31) 

The evaluation of correlation functions and of the re- 
lated observable quantities described in the previous sec- 

J. Chem. Phys., Vol. 99, No. 8, 15 October 1993 



tions proceeds unavoidably through rather heavy numeri- 
cal calculations. This has prompted various authors, even 
for the simpler case of probes reorienting in uniaxial me- 
sophases, to propose approximate analytical solutions to 
the problem. Although they cannot represent a universal 
substitute for the full numerical solution, the analytic ex- 
pressions have the advantage of showing the relation be- 
tween correlation functions and order parameters, diffu- 
sion tensor anisotropy r] and potential coefficients. 

Here we wish to provide a set of analytic approxima- 
tions for biaxial phases as well. We shall first propose a 
rather general approach that can be specialized to the sim- 
pler phases. We then compare the results with the numer- 
ical solutions to assess for which cases the approximation is 
good enough to be practically useful. We approximate the 
decay of the correlation functions with a single exponential 
that is obtained from the first derivative of the correlation 
function. Instead of the symmetrized form of the condi- 
tional probability we have found it more convenient to use 
for this purpose the unsymmetrized form, and then write 
the correlation functions as 

4;f;l’(Jt) = (D;:bo)Df$4) 

X (A?) ,!,,,tt,K(&nDkIE)* (32) 

We are looking for a single exponential approximation 
such as 

(33) 

where choosing 

b;$n=&$,w -4;f;;:,c a ), (34a) 

LL' S~f;;'JO) 
a 

mm’n= 4 ~$,(O, -t);f;;:,c 03 ) 
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x (X”) ;,!mwK(D:nD::) 

= - .;,, z(R”) Ltmt,Ltrmtt 

(364 

x (D;,D;:*,). (36b) 

In this way we can calculate the derivative of the correla- 
tion functions at t=O directly by summing the matrix ele- 
ments weighted by (D&D:::*,). These analytical expres- 
sions are listed in Appendix B, and because of their 
simplicity they could be useful in interpreting experimental 
data, but it should be stressed that the accuracy is not 
uniform for all the correlation functions, as discussed in 
the following section. Having this caveat in mind, we 
would like to stress that the analytical expressions are ex- 
tremely useful to examine the effect of changing some of 
the parameters in the calculation without (or before) going 
to the complications of the full numerical solution. In Ap- 
pendix B the expression of the unsymmetrized matrix ele- 
ments are also given. It is clear that the procedure can be 
generalized to multi-exponential approximations if needed. 

IV. CALCULATIONS AND RESULTS 

In order to put to practical use the expressions we have 
derived in the previous sections, we need to choose a po- 
tential of mean torque. Moreover if we intend to investigate 
the temperature dependence of the dynamics and the 
changes at the biaxial transition a set of order parameters 
has to be available. In the calculations presented here we 
investigate the simplest and most important case of a 
uniaxial probe subject to a biaxial potential containing only 
second rank interactions. The explicit form of this poten- 
tial is then 

(34b) 

+adT) [@o(a,/3 + dzo(a9P) 1 
ensures that the correlation functions have the correct 
value at time zero and at asymptotically long times as well 
as the derivative at time zero provided by the diffusional 
model. We can write the first derivative of the correlation 
functions as 

=cz~~( T) (; cos2 ,%f, 

4 ';$,(f,=- ; L;,,~(Xn)L~m',K%-rKt 

X (Xn) ~t!m,~,K(DkJ’,$:n)- (35) 

At t=O the eigenvalues and eigenvectors can be recom- 
bined to give elements of the diffusional matrix, 
(R”) Lrm~,L~~m~r [see Eq. (19>] 

+cI~~(T) msin2pcos2a (37) 

and it is characterized only by the coefficients, u20( T) and 
az2( T), if we assume that u2-2=u22.53 Since our aim is to 
study the changes in reorientational dynamics associated 
with a change of phase that is driven by a temperature 
variation it is important to find a way of producing a plau- 
sible set of coefficients u20( T) and u,~( T) at various tem- 
peratures. 
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TABLE I. Order parameters and effective potential coefficients for the probes used in the calculations. 

T =kT/c 0.36 0.48 

< 4 >. 0.958 0.947 
< q, >r 0.00657 0.00853 
< @a >r 0.00659 0.00859 
< @a h 0.445 0.422 

Biazial Phase Uniazial Phase 

0.61 0.85 0.97 1.10 1.136 1.22 1.34 1.47 1.59 

o&r pannneters of the solvent, A, = 0.3. 

0.935 0.909 0.896 0.884 0.881 0.869 0.852 0.833 0.812 
0.0104 0.0123 0.0112 0.00646 0.00000 0.0000 0.0000 0.0000 0.0000 
0.0106 0.0142 0.0136 0.0130 0.0126 0.0138 0.0159 0.0181 0.0206 

0.393 0.307 0.237 0.117 0.00001 0.0000 0.0000 0.0000 0.0000 

aal, and < o;to >, A. = 0.3. 

-5.69 4.48 -3.11 -2.68 -2.34 -2.25 -2.07 -1.85 
-1.56 -1.17 -0.665 -0.455 -0.202 -0.00001 0.0000 0.0000 
0.795 0.732 0.607 0.552 0.502 0.488 0.454 0.409 

0.0209 0.0266 0.0308 0.0267 0.0143 0.00000 0.0000 0.0000 
0.488 0.392 0.252 0.204 0.166 0.156 0.134 0.109 

0.0415 0.0409 0.0298 0.0212 0.0095 0.00000 0.0000 0.0000 
0.0018 0.0026 0.0025 0.0017 0.0004 0.00000 0.0000 0.0000 

0.242 0.165 0.0792 0.0560 0.0403 0.0365 0.0291 0.0211 
0.0385 0.0304 0.0152 0.0093 0.0036 0.00000 0.0000 0.0000 
0.0035 0.0034 0.0019 0.0010 0.0002 0.00000 0.0000 0.0000 

5.69 
1.56 

-0.423 
-0.387 
0.217 
0.174 
0.128 

-0.102 
-0.0874 
0.0512 

Rod-like molecule, cam = -2.88~ 

Disc-Zike molecu 

If we consider a probe particle dissolved at very low 
concentration in a biaxial mesophase, the coefficients are, 
at mean field level, proportional to the solvent order pa- 
rameters .51*54p55 The single particle orientational potential 
at second order can be written in this case as 

U(w) = c c2w c <q,,,)so”,,b)~ 
P9 m 

(38) 

where the subscript s indicates the solvent and c2pq are 
solute-solvent coefficients. For a uniaxial probe we have no 
dependence on the angle y and thus czpq= c~&~. A knowl- 
edge of the order parameters of the mesophase ( qmlp)s 
gives us the possibility of making calculations of the effec- 
tive potential and thus ultimately of the correlation func- 
tions at various temperatures, and in particular when the 
order parameters of the solution vary from a phase of bi- 
axial symmetry to uniaxial symmetry. The order parame- 
ters have the following symmetry, if we assume a or- 
thorombic biaxial phase formed of DZh molecules: 
(D~,)=(D!,,) and (Di,)=(Di-,), with m,n even. 
Moreover we also have an additional symmetry due to the 
properties of Wigner functions, that is, (0;:) 
= ( -)m+n( OF,-,). An expansion of Eq. (38) up to rank 
two then gives the effective potential acting on a uniaxial 
probe as 

cxm = 2.88~ 

234 
0.202 

-0.301 
5.059 
0.0855 

I 0.0168 
0.0027 

-0.0194 
-0.0043 
-0.0006 

2.25 2.07 1.85 
0.00001 0.0000 0.0000 

-0.294 -0.281 -0.262 
0.00000 0.0000 0.0000 

0.0805 a0719 0.0611 
0.00000 a0000 0.0000 
0.00000 0.0000 0.0000 
5.0175 -0.0145 -0.0111 
0.00000 a0000 0.0000 
0.00000 0.0000 0.0000 

- 

I 
I - 

-1.66 -1.50 
0.0000 0.0000 

0.369 0.334 
0.0000 0.0000 
0.0886 0.0724 
0.0000 0.0000 
0.0000 0.0000 
0.0155 0.0114 
0.0000 0.0000 
0.0000 0.0000 

1.66 1.50 
0.0000 0.0000 
-0.244 -0.228 
0.0000 0.0000 
0.0520 0.0444 
0.0000 0.0000 
0.0000 0.0000 

-0.0086 -0.0066 
0.0000 0.0000 
0.0000 0.0000 

+ ~~200~~0~,+~~220~d22~s1 

X 1 $o(a,P) + D?20(a,P) I. (39) 

Comparing this expression for the potential with Eq. (37) 
the coefficients azp( T) in the general form of the potential 
are given by 

azo(T) =~~~zoo~5)i+~~,~~‘,),1, (40) 

~22(T)=~[c2m(~oo),+2c220~~2~~1. (41) 
B 

The solute-solvent interaction coefficients can be factor- 
ized in a number of cases and in particular if the interac- 
tions are due to dispersion forces,54 i.e. c2pq cc a$)a$’ . It is 
then possible to define a biaxiality of the probe molecule 
studied, lp, and a biaxiality of the solvent, ;1,, 

at, 
5+, 

a20 
(42) 
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TABLE II. The initial values of the correlation functions for L=L’= 1 and L= L'=2 calculated from 

b;f;:,(o)=(D;,D;:;)=( - Y’--nBJL=+,& C(L,L’,J;m, - m’)C(L,L’An, - n)(&,,,,,J. 

nm’\n 0 1 2 

FirstRant : (L = C = 1) 

Ml 

1-I 

11 

f < P2 > +; 

-&.e <Df > 

-i<S >+5 

-$<I%>+$ - 

~~40> - 

;<P2>+5 - 

SecondRank : (L = L’ = 2) 

00 

l-l 

11 

!a-2 

20 

22 

g<pr>+$<s>+~ -$+<q>+)<q>+& 

-$&Ze<D$,>-@?.z<D:,> #.e<D&>-@.e<D:,> 

-g<P,>+;<fi>+b g<p*>+g<Pz>+; 

gYze<D&> -q%&? < q, > 

#.e<L&>-)lZe<D:,> -)fiR.e<l&>-+e<D&> 

&<P4>-$<4>+; -&<9>-$<s>+i 

$$<fi>-f<R?>+i 

-$&e<D$,>+~Re<D:,> 

-& < I?4 > -+ <Pa > +i 

+fiQ<;:;::D;,,> 

$7<9>+5<s>++ 

a 

11 0.20 
$000 

0.15 

0.10 

0.05 

0.00 
0.00 0.20 0.40 0.60 

DJ! 

ROD 

C 

0.00 0.20 0.40 
w 

FIG. 1. The correlation functions &(r) and &tic(‘) for rod- and disc-like molecules at various reduced temperatures in the biaxial phase: 
P=O.36 (a), 0.61 (b), 0.97 (c), and in the uniaxial phase: T*=1.22 (d), 1.59 (e). 
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@zoo 
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c 

0.00 * I ’ * ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
Q,, , ( 

0.00 0.20 0.40 0.00 
Dl! 

FIG. 2. The correlation functions &,,(t) and &k(t) for rod- and disc-like molecules at various reduced temperatures in the biaxial phase: P=O.36 (a), 
0.61 (b), 0.97 (c), and in the uniaxial phase: T*= 1.22(d), 1.59 (e). 

In case of a uniaxial molecule &=O, and the coefficient 
czzo is not an independent one once the biaxiality of the 
phase is fixed: 

c220 = c2mh - (4-4) 

In our calculations we have used temperature dependent 
order parameters of the biaxial solvent obtained from re- 
cent molecular field calculations.53 These calculations have 
used the nearest neighbors pair potential 54*56 

+R&J(aij) 1 +4~f@2(qj)I, (45) 

where E is a positive constant determining the strength of 
the solvent-solvent interaction, wij represents the relative 
orientation of the molecular pair and the Rk,, are 
symmetry-adapted functions:‘3 

This biaxial potential has now been fully studied and its 
phase diagram has been obtained not only with molecular 
field theory but also with Monte Carlo simulations.53 In 
general various theories predict that the uniaxial to isotro- 
pic transition is a first order one whose character becomes 
weaker as the biaxiality increases until it vanishes when the 
three axis of the constituent particles become equivalent. 
The uniaxial to biaxial transition, that involves going from 
disordered to aligned short molecular axis is a continuous 
one 1P2P6cP6’ which is expected to resemble the so called XY 
transition .62,63 For a biaxiality A,=O.3, as we assume here, 
the system has, according to mean field theory and when 
we assume a nearest neighbors number z= 12,53 a contin- 
uous biaxial-&axial transition at T*= 1.136 and a weak 
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III 
ROD 

d,e 
* I e I * I I, 3 3 3. 2 s 3 3 * ’ a 3 I L 

0.00 0.20 0.40 0.60 0.00 0.20 0.40 0.60 

DJ! Dk 

DISC! 

FIG. 3. The correlation functions ~$y-~,(r) and #,z(t) for rod- and disc-like molecules at reduced temperatures T*=O.36 (a), 0.61 (b) and 0.97 (c) 
in the biaxial phase. The correlation functions vanish in the uniaxial phase; 1.22 (d) and 1.59 (e). 

first order uniaxial-isotropic transition that takes place at 
T*= 2.88. Notice in particular that (P2)S is essentially con- 
tinuous and that 9e(~02), is different from zero on both 
sides of the uniaxial-biaxial transition, while 9?e(@2)s 
and .9?e( Go), go to zero. Notice also that the limiting low 
temperature values of these two parameters are respec- 
tively i and 0, so that it is the first one that provides the 
largest change, while the other increases from zero and 
then vanishes again. In Table I, the order parameters of the 
biaxial phase and of the rod-like and disc-like probes at a 
set of reduced temperatures selected between those studied 
here are given for A,=0.3.53 The coefficients, u+,(T) of the 
molecule, calculated from the solvent parameters, are also 
listed in Table I. The cases presented in Table I are (i) a 
uniaxial molecule with the z axis along the direction 
of maximum elongation, i.e. a rod-like probe, (czoo 
= -2.886), (ii) a uniaxial molecule with the z axis per- 
pendicular to the molecular plane, a disc-like probe, 
(c,cO= 2.886). The change of sign of czoo makes the sign of 
(P2) change according to the shape of the molecule,24’54 as 
we see in Table I, where the second and fourth rank order 
parameters are listed for the two cases. 

The order parameters of the probe have been calcu- 

lated by integration of the distribution obtained from the 
potential Eq. (37), but they can also be obtained from the 
eigenvector corresponding to zero eigenvalue by4i 

O&J = j- dwP(o) D;oW 

=$; 2, (~)Jp,o(fi)rp~,o 
x JW’+lHW+l> 

do~:&W$o) D:o(o) 

J+L 

= ; @?J,,O x @?J’,p+m;O 
J’=IJ-LI 

x Jw+lMw’+1) 
XC( L,J,J’;p,m)C( L,J,J’;O,O). (47) 

In our calculations we have evaluated the order parameters 
in both ways to check the accuracy in the calculations due 
to the chosen size of the basis set of the diffusional matrix. 

J. Chem. Phys., Vol. 99, No. 8, 15 October 1993 



6190 Berggren, Tarroni, and Zannoni: Uniaxial probes in biaxial liquid crystal phases 

(4 : 
2.00 : 

0.040 

22 
7 mm’n 

22 
T mm’n 

/1o-4 

-2.00 b 
0.30 0.70 l 1.10 1.50 

T 

0.050 

710100 

(4 

I II -Cl0 
I DISC 

0.02 1 
DISC 

- e 
-0.016 - I 

I 

VI / 
DISC I 

I 

-0.030 ,“‘,““‘,,‘,,,,,,1’,~“,,,.‘~ 
0.30 0.70 

T* 
1.10 1.50 

FIG. 4. Correlation times T& (a), pi’_,, (b), g& (c), ?A (d), dL2, (e) and <‘_,, (f) ( in units of D;‘), corresponding to the correlation functions 
plotted in figures l-3, plotted versus reduced temperature. The vertical dashed line marks the uniaxial-biaxial transition. 

In practice we have typically used for each n block an 
expansion up to L,,=20 and m,= 8 in Eq. ( 14), cor- 
responding to 149 basis functions. At the lowest tempera- 
tures we have found it necessary to use expansions up to 
L, = 40 and mmax= 8 (329 basis functions) to ensure 
convergence. 

Correlation functions have been calculated for the var- 
ious temperatures in Table I. For the potential assumed, 
the correlation functions obey the symmetry relations of 
Eq. (4). It is important to notice that the initial values of 
the correlation functions are model independent quanti- 
ties.41 The explicit expressions for the initial values are 
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TABLE III. The average Wigner rotation matrix products contributing to the nonvanishing terms of Bq. (36 b) for L”#L and L=2. 

(D2mnD~~r)=(-)m”-n~~f~-;‘I”, C(2,L”J;m, - m”) C(2,L”,J;n,--n) ( Dm-m.r,o) 

L”=O: (D2,G)=(P,), (d,D~)=9e(D&,), 

L”=l: (d*,,D::,)=r 
+ 

.+WGO), (Df,D$=f(PZ), (DTi2,D:*,,)= f -$ We(G,), 

L” = 2: Listed in Table II, 
L”=3: Not included, because they are all to be multiplicated by matrix elements equal to zero in the terms of Eq. (36b). 
L” = 4: See table. 

rnm”\n 

00 

1-l 

11 

22 

20 

02 

22 

0 

&<P6>+g<Pd>+$<Pz> 

-~‘R.e<~o>-gze<D$+ 
+$2e<<o> 

--q.%>+*<P,> 

+$@A> 

&+e<~o>-&&.e<qo> 

g%<~o>-s+‘Re<@o> 

-I-&Rt<L&> 

&@ 0a.w~; yh’ 

giP+q:oP~> 

+ f fi <9> 

J mm’ 

J mm’ 

2 

q<%>-6q<p4> 
-k)fi<PZ > 

-&jg72e<@o>+~Re<~o> 

+&-Go> 
-g<%>-&<9> 

%ik-’ 
~7Ze<Qo>fg &72E<~o> 

$@e<Qo>+gRe<Djo> 

+&&Le CD& > 

&J&e<@o>-~&2e<D$o> 
+&Re < D,2, > 

&,P~,+g<P~>+g<s> 

1.60 
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FIG. 5. In I and II the spectral densities [in units of (AzSo)*] are given as functions of reduced temperature for a rod- and a disc-like molecule, 
respectively. Jo0 (a), J,t (b), J2* (c), J,-, (d), J20 (e) and Jzm2 (f). In III and IV the ratio J11/Js2 is plotted for the two cases. The vertical dashed line 
marks the uniaxial-biaxial transition. 
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FIG. 6. Approximate values of the correlation times: g& (a), 4to (b), 4io (c), 4’_,0 (d), T& (e), and g2 2-20 (f) (in units of 0;‘) and with solid lines 
as a guide to the eye, compared to these obtained from the numerical calculations (dashed lines). The vertical dashed line marks the uniaxial-biaxial 
transition. 

given in Table II for correlation functions of first and sec- 
ond rank. The value of the correlation functions at long 
time is also model independent, since 

(48) 

The correlation functions decay to products of order pa- 
rameters, so if an order parameter goes from zero to a 
certain value at a phase transition the tail of the correlation 
function should correspondingly change. A correlation 
function labeled with m#m' is always equal to zero in the 
uniaxial phase ,35Y50 and the phase transition from biaxial to 
uniaxial phase are easily detected in the plotted series of 
correlation functions. In figures 1 (first rank) and 2, 3 
(second rank) some examples of orientational correlation 
functions for both rod- (1,111) and disc- (I&IV) like mol- 
ecules are plotted at various temperatures across the phase 
transition. The values of the order parameters correspond- 
ing to the temperatures in figures l-3 are to be found in 
Table I. It is possible to verify that for the cases with 
m’ =m the qualitative appearance of the correlation func- 

tion is not changed across the phase transition (I,11 in 
figures l-3), while those corresponding to the cross- 
correlation functions vanish in the uniaxial phase (III, IV 
in figures l-3). It is worth noting that the values of the 
cross-correlation functions are considerably higher, and of 
the same order of magnitude of the autocorrelation func- 
tions, for the disc-like molecule (IV in figures l-3) than 
for the rod-like molecule (III in figures 1-3). In figure 4 
the correlation times corresponding to the correlation 
functions in figures l-3 are plotted as a function of tem- 
perature for our chosen examples of rod- (1,111) and disc- 
(11,IV) like molecules. The transition temperature be- 
tween uniaxial and biaxial phase is marked by the vertical 
dashed line. In case of cross-correlation the correlation 
time is zero in the uniaxial phase. To detect the phase 
transition by a dynamic spectroscopic method it might be 
preferable to perform an experiment which depends signif- 
icantly on these cross-correlation contributions, because in 
this case the correlation times change from non-zero to 
zero at the phase transition. 

In figure 5 (IJI) the second rank spectral densities 
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as a guide to the eye, compared to these obtained from the numerical calculations (dashed lines). The vertical dashed line marks the uniaxial-biaxial 
transition. 

defined in Eq. (29) are plotted as a function of tempera- 
ture, and it is possible to notice that the values of the cross- 
correlation spectral densities are in the same range as those 
with m’=m in the biaxial phase, and their contribution is 
not negligible, neither for the rod- (I) nor for the disc- (II) 
like probe. In figure 5 (111,IV) the ratio J11/Jz2 is also 
presented for both the cases of a rod- and a disc-like mol- 
ecule. We see that it does not seem possible to detect the 
biaxial phase transition, since the spectral density curves 
vary continuously across the transition. However, in the 
case of a disc-like probe (IV) the ratio changes from a 
decreasing to an increasing trend as the system moves well 
into the biaxial phase. 

We also present, besides the numerical calculations, 
the results from the approximation Eq. (33) based on the 
analytical expressions given in Appendix B. The weighting 
factors, i.e. the values of the correlation function at t=O, 
are listed in Tables II and III. In the limit of uniaxial 
rotational diffusion in uniaxial phase the results of our ap- 
proximate solutions have been compared to these obtained 
by using the approximation presented by van der Meer 

et a1.48 and they are found to be in good agreement at low 
values of the second rank order parameter. 

We have further used our approximate solutions to 
calculate the correlation times through the uniaxial-biaxial 
phase transition. In figures 6, 7 and 8 the second rank 
correlation times are indicated with a solid line for the 
approximate solutions of the correlation time, while the 
numerical solution is indicated with a dashed line. The 
approximate solution is indeed satisfying for many of the 
correlation times. In general it can be noticed that the 
approximate results are less reliable at low temperatures, as 
could be expected. The more interesting point is to notice 
that the quality of the approximation is very sensitive to 
the chosen correlation function. Thus it should not be con- 
cluded that an approximation that has a high accuracy for 
some of the correlation functions, should have it for all. 
The accuracy of the approximation also changes with the 
type of chosen probe for the same correlation function 
(see, for example, c in I and II, figure 6). 
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V. CONCLUSIONS 

We have treated the reorientation of uniaxial mole- 
cules in biaxial phases in detail. The solutions we have 
obtained could be used to probe the uniaxial-biaxial nem- 
atic phase transition with, for example, perdeuterated ben- 
zene dissolved in the liquid crystal phase. 

The values of cross-correlation functions and spectral 
densities are all nonzero in the biaxial phase and zero in the 
uniaxial phase. Therefore, in order to observe the phase 
transition, an experiment dependent on cross correlation 
spectral densities should be preferred. We also found that 
observables due to the cross-correlations are higher for the 
disc-shaped probe than for the rod-like probe, at least for 
the solute-solvent parameters chosen here. Thus the use of 
say, deuterated benzene derivatives as NMR probes could 
also prove useful in view of its essentially disc-like shape. 

In addition to the numerical calculations, we have per- 
formed an approximate calculation of the correlation 
times. It is of course desirable to be able to calculate the 
correlation functions and correlation times in a more sim- 
ple and less time consuming way, but our results indicate 

also the weakness of an approximate solution as the only 
approach to be employed. Indeed the approximate forms 
might be, as we have seen, satisfactory in many cases, but 
clearly not in those cases where the correlation functions 
evolve in time in an inherently nonexponential way. Hav- 
ing this limitation clear, the approximate calculations 
could be useful in fitting experimental data as a first step, 
before making use of the more time consuming numerical 
calculations in a number of cases. 

In any case it is hoped that the results presented in this 
paper will stimulate experimental studies of the dynamics 
in biaxial nematics. 
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APPENDIX A: MATRIX ELEMENTS OF THE 
DIFFUSION OPERATOR 

Here the explicit expressions of the elements of the 
diffusional matrix are given for the case of anisotropic dif- 
fusion in biaxial phase. First we evaluate the various terms 
contributing to the symmetrized diffusional operator given 
in JZq. ( lo), which are 

(&:.I -v*l-@i,) 

=[--‘(L’+l)--n*(~-l)]S~‘~Sm,m, (Al) 

(a;:,/ -; v* y+i$J 
B 

d =- ~pjJJu+l)l 

X C( L,J, L’;m’-p,p) 

xC(L,J,L’;n,O)S m-m’-“, (A21 

( I( 
cp;, $ L, yg 

B 
)(L-ygpc) 

=$j&$ F F qhpf @@TO @VT0 
P’ 

J+J 

X c C(J,J’,J”‘;p,p’)C(J,J’,J”;l,- 1) 
f’=IJ-SI 

X C( L,r’,L’;m’-p-p’,p+p’) 

x C( L,J”, L’;n,O)G,,,,-p-pr. (A3) 

In the derivation of the matrix elements the following re- 
lations have been used: 

v29~,=[.L(L+1)+(77-1)n21~~~, (A4) 

L9in=n9kn, (A5) 

L*q”= JL(L+l)-n(n*l)q&*1. (A61 

If we want to express the matrix elements, assuming 
only second rank contributions to the potential the matrix 
elements are liven bv 

(~~:,lfl~~,>=[-L’(L’+l)-n~(~-l)+K,]SL,,S,,,+ 
llzrl 

Jzl 
KIC( L,2, L’;m’,O) C( L,2, L’;n,O)S,,, 

J2L+1 
+qFTi K&( L,4, L’;m’,O)C( L,4, L’;n,O)S,,,+ 

llzz 
JzTl 

K4[C(L,4,L’;m’-2,2)6,,,,-2 

+C(L,4,L’;m’+2,--2)S,,,~+2lC(L,4,L’;n,O)+ d 2L+l 

-JET 
K,[C(L,4,L’;m’-4,4)6,,,,-4 

+C(L,4,L’;m’+4,-4)6,,,t+4]C(L,4,L’;n,0). (-47) 
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The following constants have been used in (A7) : 

Ko= -i[ i &+a,], 

K,=-3a,-~[~a~o-3a:,], 

(J48) 

3 
K2 = - 3a22 + - as22 , 7 (A101 

6 
K3=&3a:o+a:2), (All) 

(A12) 

2 
KS=3 %a”,. 

i 
(-413) 

The symmetry relation C(2,2,J”;m,n) = ( - )” 
xC(2,2,J”; -m,n) has been used, and the Clebsch- 
Gordan coefficients have been substituted by explicit val- 
ues, where possible. We have also assumed for the second 
rank interactions, that a22=a2-2 . 53 

APPENDIX B: APPROXIMATE ANALYTICAL 
EXPRESSIONS 

We give here the approximate analytical expressions of 
the first derivative of the correlation function at t=O. To 
obtain these expressions we have used the unsymmetrized 
form of the matrix32P64 given by 

(D::,lr/ G-3 

- ~~ag[L’~L’+1)-L~L+l~+J~J+l~l 

xC( L,J,L’;m’-p,p)C( L,J,L’;n,O)S,,,,-, , (Bl) 

which is a straightforward application of (9) on the basis 
set of Wigner matrices. The analytical expressions of first 
cl$atives of the second rank correlation functions 
4 m,mn obtained from Eq. (36b) using Eq. (Bl) for the 
calculation of the matrix elements are listed below. The 
explicit expressions are rather complicated to work out and 
have been obtained with the help of the Mathematica65 
computer algebra package. 

n=O: 

d&(o) =z+G O,+; (p2) -G %&> -l-G @?e(&) -g (P4> -$ a2,(P4) +$ 

6 6 
6”,:,(0> =y-jj 

@ & 
7 ~:e(&> -7 a22(P2> -7 a2,9e(ti2&~ 

+g 
0 

e&‘e(D&) +T %(Pd +z 

(B3) 

034) 

035) 
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%2*e(&) -g Qzz(P6) -t a&?e( D&j -E u36) 

(B7) 

n=l: 

;+A (‘2) +i (p4) -ia2o(Pfj) -$ 1 (B9) 

a*o-3 @*) -$ a20(P*) +g a229e(02;0) -5 (P4> +g azo(P4) +z 

-; tp4) +; a,(P,) +A 1 0310) 

+i a2&W@o> -7 - i (Bll) 

&i(o) = -& a22-G ge(@o) -$ Q22tp2) -+ fQ&?e<@,> -F S?e(D~o> +& az2(P4) +G 

(I3121 
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a&J’4 @,J +A 0313) 

n=2: 

2 6 
&&2(O) =5-s am-~ (pz> +G %@e(&,) +& (P4) +i a&P4) +g $ 

g azz.%‘e(D~o) +q 

-g %(Pd -$ 0314) 

2 &go) =3-z 3 93-G (P2) -f adP2) +i a&W&~ -$P.d +$j a&J --A 

-& (P4) +$ a&d +i 
1 

(B15) 

&%(o)=$~%o+~ (p~)+~IIU)(p~)+~a,,~e(~~o)+~ (P4)-$a2a(P4)-$y 
I z+$ (P2) 

i-& (Pd --&ad%) -A 1 u316) 

3& 2$ 
&‘_&U =w a22+7 9e(&,) -7 

&i&(O) =g a,,+; 94&,) +i ad&) -G a&W&) +i 
49-d&)+ 
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In our calculations we have also used approximate values 
of the coefficients a20 and a22 derived from the first term of 
a power expansion of the rank two order parameters 

245&j +~~~(~o)2+~~~~(~2)(~o)2 
a20= - 

49+220(d,o)2 
, 

U320) 

a22= - 16-2o(P,) +25(P2)’ * U321) 

The expressions corresponding to Eqs. (B2)-( B19) for the 
special case of rotational diffusion of a uniaxial probe in a 
uniaxial phase are obtained by putting (02,) =0 for m # 
0, and the coefficients a20= - 5(P2) and az2=0, which ev- 
idently leads to the result that all d$fi;, with m’#m be- 
come zero as expected in the limit of uniaxial mesophase 
symmetry. 

’ M.J. Freiser, Phys. Rev. L&t. 24, 1041 (1970). 
‘R. Alben, Phys. Rev. Lett. 30, 778 ( 1973). 
‘J.P. Straley, Phys. Rev. A 10, 1881 (1974). 
‘L.J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000 (1980). 
sF. Hessel and H. Finkelmann, Polym. Bull. 15, 349 (1986). 
6A.H. Windle, C. Viney, R. Golombok, AM Donald, and G.R. Mitch- 

ell, Faraday Discuss. Chem. Sot. 79, 55 (1985). 
‘S. Chandrasekhar, B.R. Ratna, B.K. Sadashiva, and V.N Raja, Mol. 

Cryst. Liq. Cryst. 165, 123 (1988). 
‘J. MalthEte, L. Liebert, A.M. Levelut, and Y. Galeme, C. R. Acad. Sci. 

Paris 303, 1073 (1986). 
9K. Praefcke, B. Kohne, B. Giindo&n, D. Demus, S. Diele, and G. 

Pelzl, Mol. Cryst. Liq. Cryst. Lett. 7, 27 (1990). 
‘OK. Praefcke, B. Kohne, B. Gtindogan, D. Singer, D. Demus, S. Diele, 

G. Pelzl, and U. Bakowsky, Mol. Cry&. Liq. Cryst. 198, 393 (1991). 
“A. Saupe, J. Chem. Phys. 75, 5118 (1981). 
“U.D. Kim and S. Chandrasekhar, Physica A 156, 364 (1989). 
“E. Govers and G. Vertogen, Physica 133 A, 337 (1985). 
“D. Baalss, 2. Naturforsch. 4Sa, 7 (1990). 
‘sE.H. MacMillan, Arch. Rat. Mech. Anal. 117, 193, 241 (1992). 
lbT. Carlsson and F.M. Leslie, Liq. Cryst. 10, 325 (1991). 
“MB. Lace& Santos and G. Durand, J. Phys. 47, 529 (1986). 
‘*A. Saupe, S.Y. Xu S Plumley, Y.K Zhu, and P. Photinos, Phvsica A I . 

174, 195 (1991). 
19J.W. Doane, Nuclear Magnetic Resonance of Liquid Crystals, edited by 

J.W. Emsley (Reidel, Dordrecht. 1985). Ghan. 16. D. 413. . ,. 
20F.P. Nicoletta, G. Chidichimo, A. Golemme, and N. Picci, Liq. Cryst. 

10, 665 (1991). 
“A.M. Figuereido Neto, Y. Galeme, and L. Liebert, Liq. Cryst. 10, 751 

(1991). 
22NucIear Magnetic Resonance of Liquid Crystals, edited by J.W. Emsley 

(Reidel, Dordrecht, 1985). 
23C. Zannoni, Mol. Phys. 38, 1813 (1979). 

U319) 

I 

24A. Arcioni, R. Tarroni, and C. Zannoni, in Polarized Spectroscopy of 
Ordered Systems, edited by B. Samorl and E. Thulstrup (Kluwer, 
Dordrecht, 1988), p. 421. 

*sM.P. Fontana, B. Rosi, N. Kirov, and I. Dozov, Phys. Rev. A 33,4132 
(1986). 

2bR.G. Gordon, Advances in Magnetic Resonance, edited by J.S. Waugh 
(Academic, New York, 1968), Vol. 3, p. 1. 

27 W A Steele, in Transport Phenomena in Fluids, edited by H.J.M. Han- . . 
ley (Dekker, New York, 1968), p. 209. 

28C. Zannoni, The Molecular Dynamics of Liquid Crystals, edited by G.R. 
Luckhurst and C.A. Veracini (Kluwer, Dordrecht, in press). 

*‘L.D. Favro, in Fluctuation Phenomena in Solids, edited by R.E. Burgess 
(Academic, New York, 1965), p. 79. 

MJ.H. Freed, J. Chem. Phys. 41, 2077 ( 1964). 
3’ W. Huntress, Jr., Adv. Magn. Reson. 4, 1 (1970). 
“(a) P.L. Nordio and P. Busolin, J. Chem. Phys. 55, 5485 (1971); (b) 

P.L. Nordio, G. Rigatti, and U. Segre., Mol. Phys. 25, 129 (1973). 
33C.F. Polnaszek, G.V. Bruno, and J.H. Freed, J. Chem. Phys. 58, 3185 

(1973). 
“W.A. Steele, Adv. Chem. Phys. 34, 1 (1976). 
35P.L. Nordio and U. Segre, The MolecuIar Physics of Liquid Crystals, 

edited by G.R. Luckhurst and G.W. Gray (Academic, New York, 
1979), Chap. 18, p. 411. 

36J M. Bemassau, E.P. Black, and D.M. Grant, J. Chem. Phys. 76, 253 
(1982). 

37N Kirov, I. Dozov, and M.P. Fontana, J. Chem. Phys. 83, 5267 
(1985). 

‘*B Rosi, M.P. Fontana, I. Dozov, and N. Kirov, Phys. Rev. A 36.2879 
(1987). 

391. Dozov, N. Kirov, and B. Petroff, Phys. Rev. A 36, 2870 (1987). 
4oJ. Bulthuis and L. Plomp, J. Phys. France 51, 2581 (1990). 
“R. Tarroni and C. Zannoni, J. Chem. Phys. 95,455O (1991). 
42J.H. Freed, in Spin Labeling Theory and Applications, edited by L.J. 

Berliner (Academic, New York, 1971), Chap. 3, p. 53. 
43R.R. Vold and R.L. Vold, J. Chem. Phys. 88, 1443 (1988). 
“I. Dozov and N. Kirov, J. Chem. Phys. 90, 1099 (1989). 
45 (a) Z. Luz, D. Goldfarb, and H. Zimmermann, Nuclear Magnetic Res- 

onance of Liquid CrystaIs, edited by J.W. Emsley (Reidel, Dordrecht, 
1985), Chap. 14, p. 343; (b) D. Goldfarb, I. Belsky, Z. Luz, and H. 
Zimmermann, J. Chem. Phys. 79 , 6203 (1983); (c) D. Goldfarb, R. 
Poupko, Z. Luz and H. Zimmennann, J. Chem. Phys. 79,4035 ( 1983). 

46M.E. Rose, Elementaly Theory of Angular Momentum (Wiley, New 
York, 1957). 

471. Dozov and I. Penchev, J. Lumin. 22, 69 ( 1980). 
‘?‘B.W. van der Meer, H. Pottel, W. Herreman, M. Ameloot, H. Hen- 

drickx, and H. Schroder, Biophys. J. 46, 515 ( 1984). 
49C. Zannoni, in The Molecular Physics of Liquid Gystals, edited by G.R. 

Luckhurst and G.W. Gray (Academic, New York, 1979), Chap. 3, p. 

50z’Zannoni and M. Guerra Mel Phys. 44 849 ( 1981). 
” G.R. Luckhurst, The Moleklar ‘Physics oi Liquid Crystals, edited by 

G.R. Luckhurst and G.W. Gray (Academic, New York, 1979), Chap. 
4, p. 85. 

‘*D.K. Remler and A.D.J. Haymet, J. Phys. Chem. 90, 5426 ( 1986). 
53F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, and C. Zannoni, pre- 

sented at the 14th International Liquid Crystal Conference, Pisa, 1992 
(to be published). 

“G.R. Luckhurst, C. Zannoni, P.L. Nordio, and U. Segre, Mol. Phys. 30, 
1345 (1975). 

sscP. Palffy-Muhoray and G. Hoatson, Phys. Rev. A 44, 5052 ( 1991). 
56G.R. Luckhurst and S. Romano, Mol. Phys. 40, 129 (1980). 
“P. Pasini and C. Zannoni, INFN Bull. TC-83/19, 1 (1984). 

J. Chem. Phys., Vol. 99, No. 8, 15 October 1993 



6200 Berggren, Tarroni, and Zannoni: Uniaxial probes in biaxial liquid crystal phases 

ssR.G. Gordon and T. Messenger, Electron Spin Relaxation in Liquids, 
edited by L.T. Muus and P.W. Atkins (Plenum, New York, 1972), 
Chap. 13, p. 341. 

59G.H. Golub and C.F. Van Loan, Matrix Computations (North- 
Holland, Amsterdam, 1983). 

60W.M. Gelbart, J. Phys. Chem. 86, 4298 (1982). 

6’Z.-Y. Chen and J.M. Deutch, J. Chem. Phys. 80, 2151 (1984). 
62E.F. Gramsbergen, L. Longa, and W.H. de Jeu, Phys. Rep. 135, 195 

(1986). 
63M.P. Allen, Liq. Cryst. 8 , 499 ( 1990). 
64C. Zannoni, Mol. Phys. 42, 1303 (1981). 
65S. Wolfram, Mathematics (Addison-Wesley, New York, 1988). 

J. Chem. Phys., Vol. 99, No, 8, 15 October 1993 


