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Abstract 

We investigate the effects that a phase transformation, from isotropic to orientationally (nematic) and positionally 
(smectic) ordered mesophases, has on the energy transfer process between solute molecules. We combine Metropolis Monte 
Carlo simulations and a master equation approach to study radiationless energy transfer processes in three-dimensional 
ordered systems of identical uniaxial particles interacting via the Gay-Beme potential. The time-dependent excitation 
probability and the fluorescence anisotropy decay curves show an enhanced energy transfer in systems with a higher degree 
of order. We also find a non-isotropic evolution of the time-dependent excitation probability in systems with positional as 
well as orientational order, with a faster energy transfer in the smectic planes. @ 1997 Elsevier Science B.V. 

1. Introduction 

The transfer of energy from an excited molecule to 
other molecules of the same or of different type in a 
Auid solution is an extremely important process that 
has been studied for more than half a century, when 
Forster proposed his mechanism for the radiationless 
transfer of electronic energy between molecules [ 1,2]. 
One of the most important manifestations of the effect 
is in the rapid energy migration from one chlorophyll 
(Chl) molecule to another, that follows the primary 
excitation in a photosynthetic unit. In the antenna sys- 
tem, constituted by a few hundred Chl molecules [ 31, 
embedded in the thylakoid membrane and at relatively 
large distances, because of interspersed lipids [ 41, this 
process seems to allow the excitation to reach the ac- 
tual reaction site, where the energy is employed in 
the photosynthetic process. In the dipole-dipole reso- 
nance mechanism, proposed by Wrster, excitation en- 
ergy is transferred non-radiatively from a “donor” to 

an “acceptor” molecule with an average rate that can 
be written as 

(1) 

where a is a numerical constant [ 1,2], r and Qo are 
the lifetime and the quantum yield of the donor in 
the absence of transfer, II is the scalar refractive in- 
dex of the medium and ?‘$A is the separation between 
the two molecules. The integral is the overlap be- 
tween f( 3), the fluorescence intensity of the donor 
and E( ti) is the absorption coefficient of the accep- 
tor in the wavenumber range E to 5 + d3, normal- 
ized so that SOW f( fi) dfi = 1. The anisotropic quantity 
K(PDA, p,, pA) depends on the unit vectors cc,, pA 
defining the orientation of the transition moments for 
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the donor and acceptor with respect to the laboratory 
frame, as well as on the donor-acceptor separation 
unit vector PDA at time t: 

K(fDA, PDT PA) = PD PA - 3(pD ’ PDA) (PA ’ FDA) 

(2) 

The parentheses in Eq. ( 1) define a space-time av- 
erage over the positions and orientations of particles 
A and D between the excitation (time zero) and a 
later observation time t. This combined two-particle 
spatial orientational time average is extremely com- 
plicated to evaluate in full generality and a number 
of simplifying assumptions are normally made. The 
first considers the centres of mass to be fixed on the 
experimental timescale, since energy transfer is much 
faster than molecular translation, and thus only deals 
with the effect of the molecular reorientation dynam- 
ics. Even with this assumption only the two limiting 
situations with molecular reorientations occurring ei- 
ther rapidly (asymptotic limit) or hardly at all (frozen 
limit) on the energy transfer timescales are normally 
considered, even if there are some exceptions [ 5,6]. 
The assumptions mentioned reduce the calculation to 
a two-particle static average of the dynamic transfer 
evolution. For instance, in their successful GAF the- 
ory [ 71, Fayer and co-workers treat the case of a pure 
donor system with a certain concentration and uni- 
form distribution of molecular positions and orienta- 
tions and deal with the Fiirster rate isotropically aver- 
aged over orientations: 

6 

The “Forster radius” Ro represents the critical trans- 
fer distance at which transfer and radiative decay are 
equally probable and has the following expression: 

RLL12e0 
0 3n4 J mf(i.)EG9 dfi 

14 ’ 

0 

(4) 

obtained averaging the orientation factor ~~ over a ran- 
dom orientational distribution of molecules to get the 
value $. We shall find it useful to use this definition 
of Ro as an indication of the range of the transfer also 
in the more general case of anisotropic media even if 
the orientational average of ~~ will then be taken sep- 
arately. The various current theories [ 7,9-151 do not 

allow for correlations between the orientations of the 
luminescent molecules [ 81, an important aspect that 
we wish to tackle here. Even more important, most ap- 
proaches deal with disordered systems while less has 
been done for systems with positional and/or orien- 
tational order. On the other hand, even beyond liquid 
crystal systems, there are many interesting situations 
in which the orientational dependence of the trans- 
fer rate cannot be neglected. For example in various 
natural photosystems the orientation of the pigment 
molecules is not random but rather it is determined by 
the order in a bilayer membrane structure, possibly so 
as to maximize the harvesting of solar energy [ 17- 
19]. 

Here we wish to investigate the effect of the molec- 
ular ordering and examine how it influences the trans- 
fer. The major difference with ordinary isotropic sys- 
tems is thus in the different molecular organization, 
while the spectral part is essentially the same. We con- 
sider energy transfer under the assumption that the flu- 
orescence decay and energy migration take place on a 
timescale much shorter than that of molecular trans- 
lations and reorientations, a limit where the viscosity 
is assumed to be so high or the rotation so slow that 
there is no rotational depolarization of emitted fluo- 
rescence. The intermediate case, where the rotational 
correlation time is of the same order of magnitude as 
the inverse of the transfer rate is not considered here, 
but will be the subject of a subsequent paper [ 201. 

2. Energy transfer 

The incoherent transfer of electronic energy is as- 
sumed to be a stochastic Markov process with con- 
tinuous evolution between NC states where NC is the 
number of the chromophore molecules involved [ 12- 
16]. In this description of the process evolution we do 
not follow the individual excitation jumps from chro- 
mophore to chromophore, but we calculate the prob- 
ability pi(t) of the excitation being on molecule i at 
time t. This quantity is given by the following master 
equation: 

dpi(t) NC 
-= 

dt c ni,iP,j(t), (i= 1, 2,..., NC), (5) 
j=l 
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where the vector p contains the excitation probability 
for each of the N, molecules. The stochastic matrix 
II is defined as follows: 

( k;,j 3 i # j, 
NC 

flu = - c k,l - 1 i=j 
i:, 7’ 
if, 

(6) 

and depends on the configuration of the system, i.e. the 
position and orientation of all the molecules. The off- 
diagonal elements ki.j (iii, pL, pj ) represent the energy 
transfer rate between molecules i and j according to 
the Fiirster mechanism: 

kj ( rii 3 Pi 3 ~.j > = (7) 

Eq. (5) has the following formal solution: 

p(t) = exp (tn) P(O). (8) 

This matrix exponential is obtained by numerical di- 
agonalization of the real symmetric matrix 17 and the 
excitation probability can then be expressed as a sum 
of exponentials 

pi(t) = c 
.ik 

(9) 

where X is the matrix of eigenvectors, hi are the eigen- 
values and the vector p(0) represents the initial con- 
ditions of the system. In our case we consider that 
only the ith donor is excited at time zero, thus the 
vector contains all null elements except the ith which 
will be one: pk(O) = 6i.e. An alternative to solving 
the evolution equation by diagonalization is a sam- 
pling method that follows the excitation in the system 
as it jumps from donor to donor [ 121. The ensem- 
ble average is obtained by repeating the diagonaliza- 
tion procedure for a number of configurations high 
enough to give sufficiently good statistics. Even with 
this numerical approach to the excitation dynamics the 
problem of donor-acceptor space distribution has still 
to be tackled. The simplest, albeit drastic, approxi- 
mation has been to neglect pair correlation and gen- 
erate random molecular positions in a finite volume, 
or to fix them on a lattice, and generate orientations 
at random [ 13-161 in the static limit. With the ad- 
vent of Monte Carlo (MC) and molecular dynamics 

Table I 
The chosen Gay-Beme state points and the decay times (Tag) = 
Q/r for 128 donors and RI) = 3.0 

T’ Phase (4) 1231 (TET) 

1.6 high-order smectic 0.960 3~ 0.002 0.0574 * 0.0003 
2.2 smectic 0.901 i 0.005 0.0653 f 0.0008 
3.4 nematic 0.634 zt 0.028 0.0782 f 0.001 1 
4.0 isotropic 0.089 zt 0.035 0.0836 f 0.0014 

(MD) computer simulations, the possibility of using 
pair correlations obtained from simulations has started 
to be exploited [ 211. Here we propose a different 
strategy, where MC simulations of molecular organi- 
zation and the stochastic simulation of energy trans- 
fer are more strictly integrated and rather than going 
through pair correlations equilibrium configurations, 
the sets of equilibrium positions and orientations of 
molecules, generated by the simulations, are directly 
employed to perform the average in Eq. (9). This is 
particularly helpful in this work, where we wish to in- 
vestigate the effect of a phase transformation on the 
energy transfer process, 

3. Computer simulations 

We study a solute-solvent system of elongated el- 
lipsoidal molecules interacting with the Gay-Berne 
(GB) potential [22,23], an anisotropic and shifted 
version of the Lennard-Jones 6-12 interaction, where 
the strength E and the range parameter g depend on 
the orientations of the two particles and on their inter- 
molecular vector. (T also depends on molecular param- 
eters such as the length a, and breadth (T,. The GB 
potential is particularly interesting because, by choos- 
ing suitable parameters, it can model not only isotropic 
phases, but the most important mesophases such as 
nematic and smectic A and B [ 231. We use the same 
definition and parametrization of the Gay-Berne po- 
tential described in Ref. [ 231 and perform canonical 
(constant N, V, T)simulations with the same scaled 
density p* = Nc:/V: p* = 0.3. We choose 4 scaled 
temperatures T” = kT/co corresponding to different 
phases. In Table 1 we report the selected tempera- 
tures with the type of mesophase and the order pa- 
rameter (Pz), calculated as in Ref. [23]. We have 
studied systems of N = IO3 molecules for each tem- 
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perature and for each one lo4 equilibrium configura- 
tions were generated in order to calculate the spectro- 
scopic observables. We assume for simplicity that the 
chromophore solutes and the solvent molecules have 
the same interaction potential. Thus, after the stan- 
dard Metropolis MC method has been used to gener- 
ate equilibrium configurations, a random sampling is 
employed to choose NC = 128 chromophores out of 
the total of N . The energy transfer process then takes 
place only among these particles; in order to imitate 
an infinite system we make use of periodic boundary 
conditions with the so-called minimum image conven- 
tion. For this particular chromophore arrangement the 
N, x N, transition matrix is constructed and diago- 
nalized, next the observables are calculated. The aver- 
age over the above-mentioned lo4 configurations takes 
about 2 h on a HP-735 workstation using BLAS and 
LAPACK [ 26,271 fast matrix multiply and diagonal- 
ization routines [ 26,271. For most of the calculations 
we have used a value of the Fbrster radius of Ro = 
3.0~~. We have then varied this parameter as well as 
the number of chromophores in separate calculations 
in order to observe the effect of increasing the range 
of the transfer process and the chromophore concen- 
tration. Once the excitation probability is known from 
Eq. (9) we can calculate the quantities of interest: the 
excitation decay of the initially excited donor GS( t), 
the quantum yield Q and the fluorescence anisotropy 
r( t) , which we now describe. If we indicate by p)(t) 
the probability for the jth molecule of being excited at 
time t, after having excited the ith at time 0, we have, 
for the initially excited molecule 

Q(t) = (P:(t))conf. 

The experimentally measurable 
written as 

00 

Q = 
J’ 

G”(t) dt/r 

0 

(10) 

quantum yield Q, 

(11) 

can be used as a measure of the rate of the global 
energy transfer process. It is also useful to consider 
polarized fluorescence experiments where plane po- 
larized light with a polarization ei, is used for the 
excitation and the fluorescence emission is observed 
through an analyzer at eout. The intensity emitted from 
chromophore j after a time t from the excitation of 
molecule i will be 

Zi(nl;‘d,,(t) IX [ei, .pci)(0)12 

x [ eout . p(j) (t) ] 2pl (t) .I . (12) 

The observed intensity is obtained summing over all 
possible emitters j and taking a configurational aver- 
age over the absorber i. We consider here the standard 
vertical (111) or horizontal (11) polarizer setting and 
introduce an anisotropy ratio r(t) as 

r(t) = 
III(f) - IL(t) 

Ill(t) +211(t)’ 
(13) 

We derive expressions for Ill (t) and II(~) from the 
theory of time-dependent fluorescence depolarization 
in liquid crystals developed in Refs. [ 24,251. For a 
system of molecules with transition dipole parallel to 
the symmetry axis and orientations ( CZ~, pi) 

i 

NC 

z/l(t) 0: cos’PiC~J,(t) Cos*fl,t(t) 1 t ( 14) 
\ j=l I conf 

IL(f) = 

t 

N‘ 

cos’8,C~~(t)sin2~,;(t)cos2~,~(t) 
.j= 1 ) coni 

(15) 

Notice that even in a frozen system, where no rota- 
tional depolarization exists, the radiation will be de- 
polarized by the energy transfer process, as long as 
the order is not complete. Indeed at long times, where 
excitation and emission can be assumed to be uncor- 
related, we expect I = (P2). This is particularly 
important, because it shows that the order parameter 
can be obtained from a suitable concentration depolar- 
ization experiment even when an ordinary rotational 
depolarization study, based on low concentration mea- 
surements, is useless because of the high viscosity of 
the solvent. 

4. Results and discussions 

In Fig. 1 (A) we plot the decay GS( t) for the 4 ex- 
amined temperatures with range parameter Ro = 3.0 
and N, = 128 donors. We can see that there is a slightly 
faster decay of the initial excitation in systems with 
higher order. This can also be observed in Table 1, 
where we report the calculated characteristic decay 
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G’(t) 

G‘(t) 

0.0 0.1 0.2 0.3 0.4 0.5 

t/z 

Fig. I. (A) Excitation probability C” for the 4 examined tem- Fig. 2. (A) Polarization anisotropy r(t) for the 4 examined tem- 
peratures; 128 donors, Ro = 3.0. (a) T* = 1.6, (b) T’ = 2.2, peratures; 128 donors, R[) = 3.0. (a) T* = 1.6, (b) T* = 2.2, 
(c) T* = 3.4, (d) T* = 4.0. (B) Excitation probability GS for (c) T” = 3.4, (d) T* = 4.0. (B) Polarization anisotropy r(t) for 
T’ = 3.4. (a) KO = 3.0, 128 donors; (b) /?(I = 3.0, 256 donors; T* = 3.4. (a) Ro = 3.0, 128 donors; (b) Ro = 3.0, 256 donors; 
(c) R(I = 5.0, 128 donors. (c) RI) = S.0, 128 donors. 

Table 2 
Decay times for T* = 3.4 with RO = 5.0 or 256 donors times are reported. Particularly important is the effect 

of phase transformation on the polarization anisotropy 
r(t). In Fig. 2 (A) we display plots for r(t) at Ro = 
3.0 and 128 donors. This quantity depends strongly 
on the order and we see a considerable difference be- 
tween the four cases. In particular, the plateau value 
of the curves gives the (Pz) order parameters, as ex- 
pected. In Fig. 2 (B) we show the effect of increasing 
the Fijrster radius to Ro = 5.0 and NC to 256 and we 
see the profound effect it has on the dynamics. 

T’ Ro NC (TET) 

3.4 3.0 128 0.0782 zt 0.0011 
3.4 3.0 256 0.0259 rt 0.0001 
3.4 5.0 128 0.0118 f 0.0003 

times (TET) = JO” cS( t) dt. In Fig. 1 (B) the G” rela- 
tive to the nematic temperature T* = 3.4 is compared 
with two analogous calculations in which Ru = 5.0 
and the number of chromophores is increased to 256. 
As we may expect the decay is much faster. In par- 
ticular we see that the value of the Fiirster radius can 
dramatically affect the global rate of the transfer pro- 
cess. In Table 2 the corresponding characteristic decay 

o,8 /:--.- +y=sy 

0.6 : c 
r(t) 

0.4 \ 

1 
I 

o’2 ;-t 
,,J 

d 

0.0 ’ 
0.0 0.2 0.4 0.6 0.8 1:o 

0.76 / 

r(t) 
0.72 

0.68 

0.64 

0.60 .-___- 

The change in the evolution process brought about 
by the formation of the liquid crystal phase is better 
illustrated in the next two pictures (Figs. 3 and 4). 
Here we show a three-dimensional representation of 
the chromophore system and of the time evolution of 
the excitation transfer for an isotropic and an highly 
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Fig. 3. Three-dimensional representation of the time evolution of the excitation probability for T* = I .6 (smectic phase) at time t* = 0.00 
(A), I* = 0.05 (B), t* = 0.10 (C), t* = 1.0 (D), The gray level of each molecule is related to its excitation probability according 
to the palette shown: the histogram and the numbers on the right give the number of molecules with the level of excitation probability 
(normalized to IO’) indicated on the left. Only the chromophore system is shown. 
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Fig. 4. Same as Fig. 3 for T* = 4.0 (isotropic phase) 
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(A) 

0.06 

Fig, 5. Energy transfer probability density function G” (cos( fir), t) 
for propagation at an angle pr with respect to the director. Here 
R,, = 3.0, N, = 128 donors: (A) T* = 1.6 (smectic phase), (B) 
T* = 4.0 (isotropic phase). 

ordered smectic system. For clarity we do not show the 
whole GB system but only the molecules involved in 
the transfer process. The gray level of each molecule 
is related to its excitation probability according to the 
palette shown: the histogram and the numbers on the 
right give the number of molecules that possess a cer- 
tain level of excitation probability and the value is in- 
dicated by the numbers on the left expressed in thou- 
sands. We see that the propagation of excitation from 
the initial event is essentially spherical in the isotropic 
phase. On the contrary, in the smectic phase the prop- 
agation proceeds through the layers, not only with 
greater speed but also in a non-spherical way. This 
can be quantified calculating the probability density 
for molecules in the separation vector direction ?,,, as 
a function of the orientation of iii with respect to the 
director it, G”(cos(&),t) 

G”(cos(Pr),t> = (mp - cos(Pr>>Pjw),,,,. 

where @(t) s p( Y,, , iii, t) is the probability for a 
molecule j, at a separation r,i from the initially excited 
molecule i of being excited at time t. The plot 01 
the configuration averaged quantity GS (cos( &) , t) at 
two temperatures in the smectic and isotropic phase 
(Fig. 5) does indeed support the indication of the 
snapshots in Figs. 3,4 of a strongly anisotropic energy 
transfer in the ordered mesophase. 

5. Conclusions 

In this Letter we have described a simple and fairly 
general method of coupling the computer simulation 
of the equilibrium structure of a fluid and the solu- 
tion of the master equation for the time evolution 01 
energy transfer. This allows the full inclusion of po- 
sitional and orientational order and correlations and 
can be easily applied to the modeling of a variety of 
systems even in the presence of quenchers or statis- 
tical traps. Here we have examined the effects of a 
phase change, from isotropic, to nematic and smectic, 
on the qualitative and quantitative features of the en- 
ergy transfer for a set of chromophores dissolved at 
a certain concentration. We find that the orientational 
dependence of the radiationless energy transfer pro- 
cess has only a slight direct influence on the decay 
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rate. The main factor in determining the transfer rate 
seems to be the molecular separation, and thus the po- 
sitional organization, through the term at the sixth in- 
verse power of distance (cf. Eq. (7)). However, the 
onset of ordering allows the molecules to come closer 
and enhances the transfer. Also an increase in concen- 
tration, effectively reducing the average distances be- 
tween molecules, or an increase in the Fiirster radius 
leads to a dramatic change in the global transfer rate. 
The results obtained for the polarization anisotropy 
y(t) show that it is possible to study the orientational 
order via energy transfer-concentration depolarization 
experiments in high-viscosity systems, such as liquid 
crystal polymers, where rotational depolarization does 
not take place. We have also found, from the obser- 
vation of the excitation probability evolving in space 
(Figs. 3 and 4) that in systems with positional order 
the excitation follows a preferential evolution pattern 
and that the transfer seems to be more effective in the 
smectic planes. We think that this new positional as- 
pect, together with its coupling to orientational order, 
should be of particular interest in the molecular design 
of effective light harvesting devices. 
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