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Abstract

The Gay–Berne (GB) potential has proved highly successful in the simulation of liquid

crystal phases, although it is fairly demanding in terms of resources for simulations of large

(e.g. N > 105) systems, as increasingly required in applications. Here we introduce a soft-core

GB model, which exhibits both liquid crystal phase behaviour and rapid equilibration. We

show that the Hamiltonian replica exchange method, coupled with the newly introduced soft–

core GB model can effectively speed–up equilibration of a GB liquid crystal phase by frequent

exchange of configurations between replicas, while still recovering the mesogenic properties of

the standard GB potential.
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I. INTRODUCTION

Recent years have seen considerable interest in the simulation of liquid crystalline phases1.

Model potentials have ranged from the simple ones used in lattice Hamiltonians2, through hard

and soft molecular (coarse–grained) models3,4, to computationally demanding fully atomistic

potentials5,6. Considerable understanding has been provided by coarse–grained models3,4,

which due to their relative simplicity, have allowed researchers to study molecular order, dy-

namics and bulk material properties in quite large scale simulations (> 1000 molecules) of a

range of liquid crystalline phases7. Moreover, molecular potentials allow for the study of the

properties of phases for which molecular structures are not yet available, and are thus invalu-

able in providing design hints to synthetic chemists, e.g. biaxial nematics8 and ferroelectric

nematics9. Very recently the possibility of simulating electro–optic devices, such as twisted

nematic displays, has also been demonstrated using samples with ≈ 106 GB particles10.

In terms of computer time, molecular coarse–grained potentials, such as the Gay–Berne

(GB) model11, provide three key advantages over atomistic potentials. Most obvious is the

speed–up in terms of a reduction in the number of sites relative to an atomistic model, al-

beit particle anisotropy is of course more demanding than spherically symmetric short–range

interactions. However, almost as important is the increase in integration time–step that can

be achieved in a molecular dynamics (MD) simulation, with the associated improvement in

equilibration speed. Moreover, the very act of simplifying phase space, through which the

sample moves, reduces the risk of evolution traps and speeds–up a calculation regardless of

the chosen simulation technique12,13.

For liquid crystalline systems, a major simulation cost is associated with taking a simulation

through a phase transition to a more ordered phase. For instance, while gradually cooling–

down an initially isotropic sample the spontaneous onset of an ordered domain, large enough

to seed the formation of a stable liquid crystalline phase, requires long simulation times, due to

the first order character of the isotropic–nematic (I-N) transition. The time for these ordering

processes grows with system size and, even for relatively simple potential models, such as the

GB, it is of considerable importance to speed–up these processes.

Problems of equilibration are ubiquitous in molecular simulations and have already re-

ceived much attention. Amongst the many simulation strategies proposed to improve upon

standard Monte Carlo and molecular dynamics approaches, are methods based on transition

matrix Monte Carlo14, Wang-Landau sampling15,16, and new techniques such as Statistical
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Temperature Molecular Dynamics17–19. The replica data methodology20–22 has also become

very popular and has been successfully employed for a range of systems. In its standard

embodiment (i.e. parallel tempering), several MD simulations of similar samples are run

concurrently at different temperatures. During the calculation many replica exchange Monte

Carlo (MC) moves are attempted (either randomly or at regular intervals), each one trying to

swap samples (i.e. particles and their coordinates) between two independent simulation runs

at close temperatures using a Metropolis–like acceptance rule. The rationale behind this algo-

rithm is that of improving configurational sampling at each temperature23. However, for hard

particle or GB liquid crystals, parallel tempering bridging across an order–disorder phase tran-

sition is not a sensible option due to the exceedingly small acceptance ratio of configuration

swap moves. In other words, the large distance in configuration space between the isotropic

and the ordered phases means that it is very difficult to bridge temperatures embracing an

order–disorder phase transition.

Another possibility which is attracting quite a large interest is to use Hamiltonian replica

exchange MD (H–REMD)24,25. Here, it is the Hamiltonian of the system which is varied over

the replicas, with replicas chosen in such a way that the barriers in the free energy landscape

are smoothed out. The sampling of configuration space can thus become more efficient (i.e.

faster). This leads to a significant speed–up in the equilibration of the unperturbed replica

in comparison to conventional MD simulations, or to an easier escape from an otherwise

kinetically–locked metastable state. Originally H–REMD was applied to proteins dissolved in

implicit solvents or vacuum25. The results have shown that a scaled hydrophobicity led to a

better sampling efficiency compared to standard replica exchange. H–REMD has also been

used in simulations of biomolecules in explicit water26,27, and recently was applied to studies

of GTP and 8-Br-GTP molecules using soft–core interactions28. Key to the use of H–REMD

is the availability of one or more interaction potentials to use in conjunction with the one of

interest. Given our focus in liquid crystalline systems and the already mentioned relevance of

GB potentials in the field, it is particularly important to devise a family of GB interactions

that can reduce the risk of long–lived metastable states, e.g. by softening repulsion in the GB

potential.

In this paper, we introduce a soft–core variant of the GB potential and show that, through

the use of Hamiltonian replica exchange, this potential can be effectively used to speed–up

the process of equilibration of a liquid crystalline phase and bypass metastable states.
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II. SOFT–CORE GAY–BERNE MODEL

The model developed in this work is a soft–core variant of the standard Gay–Berne pair

potential either in its standard form11, or in its subsequent incarnations, e.g. biaxials29–31,

RE–squared32,33, or the elliptic contact34. In this context, the label soft–core Gay–Berne

(GBS) means that the UGBS < 0 portion of the energy surface (corresponding to the centre–

centre separation larger than the contact distance) is given by the GB potential UGB, while

the UGBS ≥ 0 branch is replaced with a functional term growing more slowly than the stan-

dard ones (e.g. ∝ r−12, or ∝ e−r) used to model the onset of short–range Pauli repulsions.

Additionally, the soft–core term does not diverge to infinity for vanishing values of r, but

takes a finite (possibly large compared to kBT ) value. This choice is reminiscent of the model

potentials used in DPD simulations35–37. However, in our case, to maintain similarity between

the phase diagrams for the soft–core and the standard models, the soft–core energy for r = 0

should be relatively large compared to kBT .

The two energy surfaces are joined by a continuous switching function, which smoothly

ranges from zero to one. The total energy between two soft–core ellipsoids is written as

UGBS = [1 − f(r, ω)] UGB(r, ω) + f(r, ω) USC(r, ω), (1)

where the first term gives the standard GB contribution to the energy, while the second ac-

counts for the soft–core repulsive barrier for distances smaller than contact between ellipsoids.

To keep the notation compact (and general) the orientations for the two ellipsoids and the

intermolecular vector are written as ω ≡ (ω1, ω2, ωr). The molecular orientations ω1, ω2 can

be expressed as unit vectors if the ellipsoids are uniaxial, or as quaternions if biaxial. The

intermolecular vector r = r2 − r1 has length r = ‖r‖ and orientation ωr. Forces and torques

are easily computed from the derivatives DUGBS = [1−f ]DUGB+f DUSC +[USC−UGB]Df ,

where D stands for the gradient ∇
r

or the angular momentum Li operators.

The GB potential gives the interaction between two (possibly unlike31) ellipsoidal particles

and can be written as

UGB(r, ω) = 4ε0 ε(ω)
[
u12(r, ω) − u6(r, ω)

]
, (2)

where u(r, ω) = σc/(r−σ(ω)+σc) changes with the particle–particle distance r and the purely

orientational contact term σ(ω), both measured in σ0 units of length. The dimensionless

anisotropic interaction term ε(ω) controls the depth of the potential wells, while the ε0 unit
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defines the energy scale. Both σ(ω) and ε(ω) are parameterised in terms of the axes σx, σy, and

σz of the two ellipsoids. In addition, ε(ω) also depends on the interaction coefficients εx, εy, and

εz modelling the strength of the side–by–side, face–to–face, and end–to–end configurations31.

Finally, the width and depth of the GB interaction wells can be tuned by means of the empirical

parameters σc, μ, and ν. Explicit expressions for the anisotropic σ(ω), and ε(ω) terms, as

well for the forces and torques of the GB potential have been given elsewhere38,39, and for

concision will not be reported here.

The soft–core repulsive energy surface was modelled for every set of orientations ω as a

straight line with constant slope m passing through the locus (σ(ω), 0) as

USC(r, ω) = m [r − σ(ω)], (3)

where σ(ω) is the anisotropic contact term of the GB potential. Using this prescription the

whole surface of the GB ellipsoids has the same softness, i.e. the modulus of the soft–repulsive

force between two overlapping particles does not depend on the particle–particle distance r

since the gradient of the soft–core potential is

∇
r
USC(r, ω) = m [(r/r) −∇

r
σ(ω)]. (4)

The soft–repulsive torques arising from USC can be computed after applying the angular

momentum operators Li
38,39, and these also give purely orientational terms

LiU
SC(r, ω) = −mLiσ(ω). i = 1, 2 (5)

Since these ∇
r
σ(ω), and Liσ(ω) terms are routinely computed for the evaluation of the

gradient and torques of the standard GB potential, the extension to the soft–core variant

comes at a negligible extra computational cost, and requires minimal changes into existing

MD (or MC) simulation codes.

The continuous blending between GB and soft–core potential surfaces was achieved by

employing a logistic function f(r, ω) of sigmoidal shape

f(r, ω) = exp[k (r − σ(ω))]/(1 + exp[k (r − σ(ω))]). (6)

The parameter k gives the “steepness” at the inflection point located at the anisotropic contact

distance r = σ(ω). For k < 0 the switching function tends asymptotically to 0 for increasing

values of r, while for r < σ(ω) it goes to unity. The slope k can be tuned to modulate the
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steepness of the blending surface between UGB and USC , i.e. to decrease (possible) undesirable

oscillations in the repulsive force across the inflection point. If k is not small enough the UGB

branches diverging to infinity for r tending to 0 may not be cancelled out by the 1− f weight,

and unwanted features in the total energy may appear for small particle–particle distances.

In this case a (small) threshold value with respect to 1− f(r, ω) can be introduced to cut–off

this term to zero whenever ‖1 − f‖ is smaller than the threshold.

The gradient of the switching function is

∇
r
f(r, ω) = k f(r, ω)[1 − f(r, ω)] [(r/r) −∇

r
σ(ω)], (7)

while the effect of the angular momentum operators can be written as

Lif(r, ω) = −k f(r, ω)[1 − f(r, ω)]Liσ(ω). i = 1, 2 (8)

These expressions can also be used for modelling mixtures31 of soft–core, or soft–core and

standard particles, provided that interactions are computed using the parameterisation corre-

sponding to the softest species of each pair.

As an example, in Figure 1 we report some representative energy profiles for the GBS

potential plotted for the parameterisation σx = σy = σc = σ0, σz = 3 σ0, and εx = εy = ε0,

εz = 0.2 ε0, and μ = 1, ν = 3 of Ref.7 (in short GB(3,5,1,3)), and with additional parameters

k = −100 σ−1
0 and m = −70 ε0σ

−1
0 , for the steepness of the blending logistic function, and for

the slope of the soft–core repulsion surface, respectively.

The soft GB interaction just introduced is of interest in its own right and will be studied in

detail elsewhere40. Here, we only wish to verify if it leads to radically different phase behaviour

with respect to the standard GB model, or if it can be used alongside it in the H–REMD

procedure. To obtain this generic picture of the effects of softness on the mesogenic properties

of a GB liquid crystal we have performed a preliminary exploration of the phase diagram of the

GB(3,5,1,3) model. We have used MD simulations in the NV T ensemble with a velocity–Verlet

integrator41,42 and a weak–coupling Berendsen thermostat43 to study an N = 1024 sample at

dimensionless density ρ∗ ≡ Nσ3
0/V = 0.37. The time–step was Δt∗ = (ε0/σ

2
0m0)

1/2Δt = 0.001,

steepness k = −70 σ−1
0 and slope m ranged from m = −100 ε0σ

−1
0 to m = −20 ε0σ

−1
0 . The

results for the order parameter 〈P2〉 = (1/τ)
∑τ

t P2(t) are given in Figure 2. The time average

is computed with respect to the instantaneous P2(t) = (1/N)
∑N

i [3(zi · n)2
t − 1]/2 giving the

average orientation of long molecular axes zi with respect to the configuration director n44. We

see that the steeper soft–repulsive energy barrier, m = −60 ε0σ
−1
0 , enhances the stability range
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of ordered phases: the I-N transition shifts to a higher temperature. The soft–core samples

also show larger values of the average order parameter, 〈P2〉, with respect to the standard GB

over the entire temperature range. The weaker soft–repulsive barrier, m = −30 ε0σ
−1
0 , impairs

the anisotropy of the GB model: the I-N transition shifts to a lower temperature, and average

〈P2〉 values are now systematically lower. Finally, the intermediate barrier, m = −40 ε0σ
−1
0 ,

closely follows the phase diagram of the standard GB in the smectic and nematic regions, and

deviates only in giving a higher I-N transition temperature. These simulation results suggest

that there are two competing effects with opposite influence on the mesogenic properties: (a)

the softness allows an easier (lower energy) anisotropic close packing into mesogenic structures;

and (b) softness also mellows the effective anisotropy of the potential by widening the area of

the energy surface accessible at a given kBT . The preliminary conclusion is that the potential

energy softness can be effectively tuned to obtain both kind of order enhancing or depressing

effects, or even to closely match the mesogenic properties of the standard GB model.

We note also that the soft–core coarse–grained potential used here has potential applications

in its own right for the study of liquid crystalline systems, e.g. as a potential for the simulation

of systems where the effective interaction range compared to particle size can be tuned, e.g.

for anisotropic colloidal systems, or in view of bridging the mesoscopic gap between standard

computer simulations and continuum techniques), or in a multi-site coarse–grained model for

use with liquid crystalline macromolecules.

III. HAMILTONIAN REPLICA EXCHANGE

The Hamiltonian replica exchange algorithm24,25 deploys several simulations running con-

currently over a range of different (but relatively similar) Hamiltonians, corresponding to total

potential energies Un(Xn), which are allowed to exchange the instantaneous state (i.e. coordi-

nates) and swap the trajectory in phase (or configuration) space between pairs of contiguous

runs.

In practice, the acceptance probability for the Hamiltonian exchange can be realised (see

for example Refs.25 and26) by considering two different replicas with energies Un(Xn) and

Um(Xm) where Xn and Xm represent the configurational coordinates for the replicas n and

m, respectively. The equilibrium probability (Boltzmann distribution) for the nth replica can
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be written as

Pn =
1

Zn
exp [−βUn(Xn)] , (9)

with β ≡ 1/(kBT ). Now, considering the transition probability, Π(Xn, Un; Xm, Um) that the

configuration Xn in the nth replica exchanges with the configuration Xm in the mth replica,

the detailed balance condition42 can be written as

Pn(Xn)Pm(Xm)Π(Xn, Un; Xm, Um) = Pn(Xm)Pm(Xn)Π(Xm, Un; Xn, Um). (10)

Substituting Equation 9 into Equation 10, the ratio of the transition probabilities can be

obtained
Π(Xn, Un; Xm, Um)

Π(Xm, Un; Xn, Um)
= exp(−Δnm), (11)

where

Δnm = β {[Un(Xm) + Um(Xn)] − [Un(Xn) + Um(Xm)]} . (12)

This yields a Metropolis–like acceptance criteria for the configuration exchange

Π(Xn, Un; Xm, Um) =

⎧⎪⎨
⎪⎩

1 if Δnm ≤ 0,

exp(−Δnm) if Δnm > 0.
(13)

The sampling from this distribution is achieved by using the standard von Neumann rejec-

tion criterion. In our case we have simply two replicas: U0 = UGBS , and U1 = UGB .

IV. SIMULATION RESULTS

The MD simulations were performed using the parameterisation GB(3,5,1,3) (see Figure 1)

together with k = −100 σ−1
0 , and m = −70 ε0σ

−1
0 for the GBS potential. The threshold value

for the logistic function was ‖1 − f‖ = 10−6. The system consisted of N = 1000 particles

in a cubic sample with periodic boundaries at dimensionless density ρ∗ ≡ Nσ3
0/V = 0.3

which was simulated in the constant NV T ensemble using velocity rescaling to keep the

dimensionless temperature constant to T ∗ ≡ kBT/ε0 = 2.8. The equations of motions were

integrated using the velocity–Verlet algorithm with dimensionless time–step of Δt∗ = 0.001.

For the standard GB(3,5,1,3) parameterisation the given state point is known to be well into

the uniaxial nematic region with an order parameter 〈P2〉 ≈ 0.82 ± 0.017. The GBS system

has instead a slightly higher orientational order 〈P2〉 ≈ 0.85 ± 0.01 in agreement with the

preliminary phase diagram results shown earlier.
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Initial test benchmarks of the soft–core Hamiltonian exchange algorithm were performed

using two replicas: one with ellipsoids interacting via the standard GB potential (equation 2),

and the other with the GBS model (equation 1). All MD simulations used, as starting con-

figurations, well–equilibrated GB isotropic samples at T ∗ = 4.5. Two different test cases of

deep quenches of an initially isotropic sample brought to a temperature in the nematic region

have been studied: one with both standard and GBS replicas using the same dimensionless

time–step Δt∗GB = Δt∗GBS = 0.001; the other with a ten times larger time–step, Δt∗GBS = 0.01,

for the soft–core sample, and Δt∗GB = 0.001. Attempts to exchange the configurations between

the two replicas were carried out every 500, 100 or 50 MD time–steps using the acceptance

criterion of Equation 13. To obtain an estimate of the average speed–up of the H–REMD

equilibration with respect to the standard MD evolution a total of 20 independent H–REMD

simulations were carried out in each case.

A comparison of the onset of the instantaneous orientational order parameter, P2 (t),

as a function of MD time–steps, at T ∗ = 2.8 for the H–REMD and for the standard GB

simulations is presented in Figure 3. For the case where both replicas used the same time–

step Δt∗ = 0.001 (Figure 3–a) a speed–up of approximately 20% for equilibrating the nematic

across the I-N phase transition was observed. Since the phase diagram for the two systems is

similar, successful replica exchanges are frequent, and the standard GB sample thus benefits

from the improved sampling.

To check the advantage of using longer time–steps in integrating the equations of motion

for the soft–core potential, additional replica exchange simulations were run using the time–

step Δt∗GBS = 0.01 for the soft–core replica while attempting the exchange of configurations

every Nex = 50 or Nex = 100 MD time–steps. We compared our H–REMD simulation results

with those for standard GB simulations, where the onset of the nematic phase took place

on average (considering ten independent equilibration runs) between 21000 MD time–steps in

the best case and 45000 MD time–steps is the worst one. In the two H–REMD simulations

cases a nematic order was achieved within a range of 3600–7600 and 4000–9600 MD time–

steps, leading to speed–ups of approximately 2.8–12.5 and 2.2–11.3, for the systems with

Nex = 50 and Nex = 100, respectively. (It must be noted that one of the MD simulation runs

with Nex = 100 failed to attain a stable nematic organisation within the 10000 MD time–steps

window allowed for the experiments.) The acceptance probabilities for exchanging the replicas

were Δ50
GBS−GB ≈ 0.212 ± 0.006 and Δ100

GBS−GB ≈ 0.23 ± 0.01.
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In Figure 3–b an example of the time development of the orientational order parameter,

P2, is presented for the H–REMD system using a longer time–step Δt∗GBS = 0.01 for the soft–

core replica. An order of magnitude speed–up can be observed for the growth of a nematic

phase for the GB replica. From the inset of the first 6000 MD time–steps of the simulation,

Figure 3–c, the effectiveness of the replica exchange mechanism can be readily observed.

It is worth noting that while replica exchange works very well for speeding up nematic

equilibration from an isotropic starting point, little (if any) speed–up is seen for the reverse

process (regardless of the chosen value of m). This is mainly because formation of an isotropic

is typically very rapid for Gay-Berne systems, and (unlike the nematic-isotropic case) does

not suffer from slow growth of a uniform phase, after nucleation.

It is worth noting also that the choice of m in Figure 3 is not the optimum choice. (In this

case m = −70 was chosen as a suitable value by noting the behaviour of the curves in Figure 1).

In practice, as with other replica exchange approaches, it would be useful to carry out an initial

(short) trial simulation to check the acceptance ratio for replica exchange swaps. If necessary

m could be adjusted in the course of an initial “pre-production” part of a simulation. Indeed, it

should be expected that the optimum choice of m will change with state point. Consequently,

a useful extension of this methodology, involves taking advantage of several different replicas

with different m parameters. Here, swaps are allowed between any randomly chosen pair. As

an example, we present results for two state points, T ∗ = 2.8, T ∗ = 3.4, for a Gay-Berne

with replicas corresponding to m = −70, m = −80 and m = −160. The lower part of figure

4 shows the acceptance ratios for the two runs for swaps involving each pair, with results

averaged over 10 simulations each starting from independent configurations. In the case of the

two temperatures shown, the balance of preferred swaps changes with state point. However,

for both temperatures, the same set of replicas is able to speed up equilibration. For T ∗ = 2.8,

the isotropic-nematic equilibration takes between 3300 and 6700 MD steps depending on the

starting point (mean of 3965 MD steps over 10 independent simulations), and for T ∗ = 3.4

equilibration takes between 3730 and 6700 MD steps (mean of 4673 MD time steps). Unlike

conventional parallel tempering the overlap between energy distributions is not the over-riding

factor in determining the best acceptance ratio. The top part of figure 4 shows this by plotting

histograms for the energy distribution within each of the four ensembles. The best direct

overlap with the GB histogram occurs for the m = −80 replica. However, whether Δ (in

equation 12) is sufficiently small (or negative) depends on the energy of the GB potential in
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the m = −80 ensemble and vice versa. In the case of the system in figure 4, it is the m = −160

replica which fulfills this criteria best, i.e. (Un(Xn) − Un(Xm)) ≈ (Um(Xn) − Um(Xm)) for

a significant number of configurations (due to a balance between changes in attraction and

repulsion between Hamiltonians), leading to efficient swapping with the GB system. As in the

two-replica case, it would be possible to optimise m values by measuring the mean acceptance

ratios during the initial stages of a simulation.

V. CONCLUSIONS

A simple soft–core family of Gay–Berne pair potentials (GBS) has been introduced, and

a preliminary study of the effect of softness on the order parameters and phase behaviour of

a system of uniaxial ellipsoidal particles interacting with this potential has been performed,

finding that GBS interactions can be effectively varied to either increase or decrease mesogenic

properties.

We have shown that by judicious choice of the softness of the repulsive region of the GBS

potential a phase behaviour similar to that of the standard GB potential can be obtained,

while preserving the relevant computational advantages stemming from the usage of longer

time–steps, and reducing the risk of tangled configurations that are kinetically difficult to

unlock.

We have also shown that, using this GBS potential in a Hamiltonian replica exchange MD

(H–REMD) method can provide an effective way of significantly speeding–up equilibration for

the standard GB potential that is known to provide a good representation of liquid crystalline

organisations in a variety of systems3,45. We believe this to be particularly important as the

scale of current simulations requires moving towards O(106) particle systems as required in

simulations of devices10 or of self–assembly46, and that this GBS–GB H–REMD approach

could provide a molecular based alternative to DPD–like methods.
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FIG. 1: Representative profiles for the soft–core Gay–Berne potential with σx = σy = σc = 1 σ0,

σz = 3 σ0, and ǫx = ǫy = 1 ǫ0, ǫz = 0.2 ǫ0, and µ = 1, ν = 3, and steepness k = −100 σ−1
0 , and

slope m = −70 ǫ0σ
−1
0 . The threshold value for the logistic function cut–off was ‖1− f‖ = 10−6. The

energy curves are relative to three specific configurations: side–by–side (S), tee (T), and end–to–end

(E). A plot for the standard GB side–by–side interaction energy is also provided for comparison.
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−1
0 . The state points are from MD simulations in the NV T ensemble for an

N = 1024 sample at dimensionless density ρ∗ = 0.3. The reference points from the NV T simulation

of the standard GB(3,5,1,3) model7 are given by grey points.
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FIG. 3: The instantaneous order parameter P2 for the Hamiltonian replica exchange benchmark

simulations. Bold line GB replica; dashed line GBS replica; dotted line standard GB simulation with

∆t∗ = 0.001 (provided for comparison). Plate (a) both GB and GBS replicas are run with same

time–step ∆t∗GBS = ∆t∗GB = 0.001; plate (b) GBS replica with time–step ∆t∗GBS = 0.01, and GB

replica with ∆t∗GB = 0.001; and plate (c) enlargement of the first 6000 MD time–steps from the

system with ∆t∗GBS = 0.01 and ∆t∗GB = 0.001 of plate (b).
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FIG. 4: Top: Distribution of energies for 4 replicas (GB, S1 (m = −70), S2 (m = −80), (S3)

m = −160) for simulations at T ∗ = 2.8. Bottom: Acceptance probabilities at T ∗ = 2.8 and T ∗ = 3.4

for replica exchanges between GB, S1, S2, and S3 ensembles.




