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A simple generalization of the Lebwohl-Lasher model, where fourth rank,
rather than second rank, interactions are involved is investigated. This model
was first put forward and studied some years ago using molecular field theory
(Zannoni, C., 1979, Molec. Crystals lig. Crystals Lett., 49, 247). There it was
found that there should be a temperature interval where the fourth rank order
parameter is higher than the second rank one. This unusual behaviour has been
found by various groups to be consistent with fluorescence depolarization data
for diphenylhexatriene in DPPC and DMPC membrane vesicles. In this paper
we investigate more thoroughly the P, model using Monte Carlo simulations
with periodic boundary conditions on a 10 x 10 x 10 lattice and with the
recently proposed Cluster Monte Carlo method on a 6 x 6 x6 and a
10 x 10 x 10 lattice. Our results are consistent with a first order transition. We
find that the results for the transition temperature and for the second and
fourth rank order parameters are well approximated by two site cluster theory.

1. The P, model

We generally define a P, model as a system of particles interacting with a purely
fourth rank pair potential [1]. Here we are more specifically concerned with a
lattice version of the model defined by the rotationally invariant hamiltonian

N N
Unw, 0y, ..., Og) = —% -21 'Zlgij Pycos B;);  withi#j, (1)

i=1 j=
where it is understood that the particles are placed on a regular three dimensional
cubic lattice with an edge of length L, containing therefore a total of N = L? sites,
B;; measures the angle between the symmetry axes of the two molecules, P,(x) is a
fourth rank Legendre polynomial and ¢;; designates the strength of nearest neigh-
bour attractive interactions. Thus ¢; is either zero or a positive constant, ¢. The
lattice model is a generalization to fourth rank of the well known Lebwohl-Lasher
model [2]. The simple interaction (1) has two minima for molecules parallel or
perpendicular to each other, as shown in figure 1. The configuration of the system is
given by the set of N orientations w; = (%, ;) [3]. A P, model was first put forward
and studied some years ago using molecular field theory [1]. There it was found
that the first-order character of the disordering transition is enhanced compared to
the second rank case. Moreover it was found that there should be a temperature
interval where the fourth rank order parameter is higher than the second rank one.
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Figure 1. The anisotropic pair potential U;; (dimensionless units) for two neighbour mol-
ecules in the P, model as a function of the relative angle g, ; (degrees).

Quite recently this unusual behaviour has been found to be consistent with fluores-
cence depolarization data of diphenylhexatriene in DPPC and DMPC membrane
vesicles [4-6]. The reason could lie in the fact that the orientational distribution
predicted for the model has a peak not only parallel to the director but also
perpendicular to it, even though this is a smaller one. The model could thus roughly
emulate physical situations with two perpendicular sites populated. Here we have
investigated the P, model with computer simulations [7] using the recently pro-
posed Cluster Monte Carlo (CMC) method [8]ona 6 x 6 x 6 and a 10 x 10 x 10
lattice and the Periodic Boundary Monte Carlo (PBMC) on a 10 x 10 x 10 lattice.
We also show that two site cluster (TSC) theory [9-12] gives a good approximation
to the computer experimental results.

2. Monte Carlo simulations

2.1. Cluster Monte Carlo

An important aspect of the computer simulation of anisotropic systems is the
determination of their temperature of transition to the isotropic phase. To this end
the choice of boundary conditions, i.e. the environment which surrounds the sample,
is important. Two common choices are to use periodic boundary conditions or to
leave empty space around the box. The first method is the standard one in simula-
tions and consists of having exact replicas of the system filling the space as required
by the range of the pair interaction. Although vastly superior to a free space bound-
ary, periodic boundary conditions can lead to a smearing and broadening of the
variation of the heat capacity and order parameter with temperature. This compli-
cates the location of the transition and in turn often means ‘that relatively large
samples, with many thousands of particles may have to be used. In this paper we
have first simulated the P, system using the recently proposed Cluster Monte Carlo
method. In this technique, described in detail in [8], the desired bulk or global
average of a quantity 4 is written as an average over all the external ‘world’
configurations [W] of the values {A)w, calculated for a fixed configuration of the
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‘world’ outside the sample box. Thus

(Adg = <<A>[w1>w (a)
~ (1/My) [gv:] {A>w (2b)

where My, is the number of sampling used in the approximation (2 b). In practice a
MC simulation is run to obtain {A4)w; and the outside world configurations needed
are obtained by creating a zone of ghost particles outside the sample box having on
average the same ordering properties and, in particular, the same singlet distribution
of the system inside the box. The orientations of the virtual neighbours are sampled
from an orientational distribution function constructed, using maximum entropy
principles, from the order parameters calculated inside the sample. We assume a
symmetry breaking field direction, defining the Z laboratory axis and that the
ordered phase is at most uniaxial around this direction. We then calculate the order
parameters with respect to this direction, which for cylindrically symmetric particles
are just the Legendre polynomial averages {P.), with L even, ie. {(P,), (P4,
..., {Pr.>. We construct the best information theory [13] inference for the orienta-
tional distribution of the particles outside the sample based on these observables, i.e.

P(cos f) = exp [ i ap Py(cos ﬂ)], 3
L=0

where the coefficients a; are determined from the constraint that the available (P )
can be reobtained by averaging P,(x) over the distribution. In the present case we
calculate the first two relevant order parameters, {P,> and {(P,), so that the most
likely distribution will be of the form

exp [a, P,(cos B) + a, Py(cos B)]
Jn dp sin B exp [a, P,(cos B) + a, P4(cos B)]

0

P(cos B) =

@)

The coefficients a,, a, are determined by solving the non linear system

J ndﬁ sin BP,(cos B) exp [a, P,(cos B) + a4 P4(cos )]

0

(P = = , (5a)
J dp sin B exp [a, P,(cos B) + a4 P,(cos B)]

0

J‘"dﬂ sin BP,(cos f) exp [a, P,(cos B) + a, Py(cos B)]

(Ppy = =—7 (5b)
.f dp sin f exp [a, Py(cos B) + a4 P4(cos B)]
o

The solution of this system is obtained using the IMSL library routines [14]. The
results are shown in figure 2. Notice that the coefficients a,((P,), {P,)) and
a,({P,, {P,>) are not defined in the entire ((P,), {P,)) plane, but in a sort of
half-moon region. This domain is delimited by the inequalities [15]

BPY* — (P — 5 <P <P + 15 (6)

and these restrictions follow in turn from Schwarz’s inequality [16] applied to the
specific trigonometric form of the second and fourth rank Legendre polynomials.
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Figure 2. The exponential coefficients a, (a) and a, (b) in the distribution f(B) cc exp
[a; Py(cos B) + a, P,(cos B)] shown as a function of (P,> and (P,).

We have studied two systems of particles interacting with the P, potential
equation (1) on a simple cubic lattice with dimensions 6 x 6 x 6 and 10 x 10 x 10.
The calculation is started from a completely aligned system at low temperatures or,
where available, from an already equilibrated configuration at the lower tem-
perature. The Metropolis Monte Carlo procedure is then used to update the lattice
for a certain number of cycles, ie. of sets of N attempted moves. Each particle is
selected at random for trial move at every cycle using a random shuffling algorithm
[17]. A new trial orientation of the chosen particle is then generated by a controlled
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variation from the previous one using the Barker—Watts technique [18]. We have
checked that a rejection ratio not too far from 0-5 is achieved. For the present
system we have found the simpler method of generating uniformly distributed
random values of cos f and « unsatisfactory, since it leads to a very small accep-
tance ratio. After a pre-equilibration period the order parameters (P,), {(P,) inside
the sample are calculated. These two parameters are used to determine a, and a,
and thus the distribution in (4) from which new orientations for the ghost particles
outside the box are sampled. We generate the orientations of these external ghost
molecules using a simple rejection technique [8] and check that both the order
parameters (P,>., and (P, relative to the particles outside are the same as
those inside within an acceptable error (here 0-006) and the generation is repeated if
this is not the case. The energy of the system is then recalculated and evolution
proceeds as before. In all the subsequent cycles the order parameters with respect to
the Z laboratory direction Py for the molecules inside the box are still calculated.
After a certain number of cycles M an average is calculated for this K trajectory
segment together with the attendant standard deviation og. These (P,);, and
(P>, parameters are then compared to the ones outside and if the difference
between them is statistically significant to within a particular confidence level (here
0-05) [19], a new set of orientations for the ghost molecules is generated using the
new order parameters. If the order parameters inside and outside are not signifi-
cantly different the orientations outside are kept and the next check is made after a
longer segment, ie. Myg,, > My. The number of cycles My is instead left
unchanged if the order is adjusted. This ensures that on one hand we do not choose
incorrect order parameters outside and leave them unchanged. On the other hand
since every change of the outside layer will lower the short range correlation at the
interface this method takes care to do the updating only if really needed and not on
every cycle or on the basis of some wild fluctuation. A number of observables are
calculated, as we shall see in detail later on.

2.2. Periodic boundary conditions

Since the CMC method is relatively new and has only been applied to the
Lebwohl-Lasher model [8] it is of interest to compare its performance with the
classical PBMC method. Thus we have also studied a system of N = 1000 particles
employing the standard Monte Carlo Metropolis method with periodic boundary
conditions (see, e.g. [7]). The simulation was meant to be completely independent
from the previous CMC ones, so once more the run at the lowest temperature
studied has been initiated from a completely aligned system. The calculations at the
other temperatures have been started from an equilibrium configuration at the
nearest lower temperature. A separate simulation starting from the isotropic phase
has also been performed to check for hysteresis effects. The same controlled configu-
ration updating procedure mentioned in the previous section [18] was employed.
Order parameters have been evaluated by diagonalization of the ordering matrix
[7] and fourth rank order parameters have been computed with the algorithm
introduced in [17].

3. Two site cluster theory

Here we only give a short summary of the two site cluster theory employed,
since our treatment follows closely the lines of the classic work of Strieb, Callen and
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Horwitz [9] and to some extent those of the more recent applications of Lekkerker-
ker et al. [12, 20] on the Lebwohl-Lasher model (see, e.g. [7]). The key point of the
cluster treatment is to devise an approximation for the Helmholtz free energy Ay as
a sum of contributions from progressively larger clusters. Here

and Zy is the N particle configurational partition function

1
Zy= N f {dw} exp [-Upwy, @,, ..., oy)/kT], 8)

where the molecular orientations are referred to the laboratory frame, chosen with
the z axis along the potential director. The volume element is {dw} = dw,dw, ...
dwy, with dw; = da, sin §,dp;, and the integration is extended to all the variables
not appearing on the left hand side. We proceed by rewriting the relative orientation
terms Py(cos ;) in the potential energy (1) as a sum of Wigner functions using the
spherical harmonics addition theorem [3] as

Uy= —32 {P a(cos B;)P(cos B) + z D;O(wi)D;(’)k (wj)} &)

i<j

The potential energy can be formally partitioned into an unperturbed part U°
containing only single particle contributions and a perturbation term U’

Uy=U°+ U, (10)
where
U° = —E'Z.{—b‘zt + by[P,(cos B) + P4(cos ﬁ,)]} 1y
and
U' = —&Y {Py(cos B;j) + b3 — bs[Pa(cos B;) + Py(cos )1} (12)

i<j

The arbitrary separation constant b, is to be treated as an adjustable variational
parameter and will be determined by requiring that the free energy is a minimum.
As a consequence of the separation introduced in the potential, the free energy
becomes a sum of two parts

Ay=A°+ A’ (13)

where the unperturbed part

—~A%(kT) = In j {dw} exp (— U°/KT),
=_%b§+Nan,—Nln2 (14

consists only of one particle contributions, with z the coordination number (z = 6 in
our case) and Z, is a single particle pseudo-partition function

Z, = f "4B sin B exp {% b, P(cos /3)}. (15)

0



The P, model 1511

At this level of approximation, the treatment would be equivalent, after mini-
mization with respect to b, , to molecular field theory and it would yield b, = (P ).
An improvement over molecular field is obtained by approximating the correction
term — A,

—A'/(kT) = In {exp (= U'/kT)>yo (16)

in (13). Following Strieb—Callen—Horwitz [9] the correction free energy can be
formally expanded in an infinite cluster series as

—A'/(kT) = — ng;/(kT), 17)

where the explicit general expression for the a cluster contribution is given in [9]. In
practice we retain here the first correction term, obtaining the so called two site
cluster approximation

—AJKT) ~ — Ay/kT) (18a)
= ¥ In Cexp [~ Uy/kT)]on (18b)

N
—iNzInZ,, - —z—kf;—, b2 —Nzln Z,. (18¢)

The approximate free energy at two-site cluster level then becomes
—A,/(kT) = —(A° + AL)/kT (19a)
=4iNzlnZ,, —(z—1)N I Z,, (19b)

where Z,, is the two particle pseudo-partition function

Zi= j do, J 4o, exp {kiT [balz — P4c0s 1) + Palcos )] + Pufcos ﬁu)]}.

(20)

The condition of minimum free energy with respect to b, gives the consistency
requirement

{Py>z, = 3{Py(cos B,) + Py(cos B2z, - (21

In practice we shall refer the free energy to the standard isotropic state with com-
plete disorder, thus we shall subtract the infinite temperature contribution. The
various thermodynamic observables are obtained from the free energy. The energy is
obtained by differentiating the free energy with respect to S = 1/(kT) and inserting
the self-consistency conditions. This gives

Nze

<UN> = T8

> %4> | (22)

where o, is a short range order parameters
op = {Py(cos B,,))z,,- (23)

equal to the value of the rotationally invariant pair correlation at nearest neigh-
bours distance r = a [7]

op = G(a). (24)



1512 C. Chiccoli et al.

The ability to calculate short range order parameters represents an important
advantage of two site cluster theory over mean field. There in fact the relative order
of two particles is the same for arbitrary separations and ¢, = (P, >2. In particular
no short range order is predicted in the isotropic phase. An expression for the TSC
heat capacity is obtained differentiating the energy with respect to temperature.
Thus C¥ = C,/kN is

zg?

cy {[(P‘;(COS Bi12)*> — (041 + 2z - 1)

- 9Brba)
Y 2AKT)?

oBr
X [{P4(cos B1)P4(cos B,3)>z,, — 064{P4(cos l31)>zl]}’ (25)

where 6(f, b,)/0fy is obtained by differentiating both sides of the consistency equa-
tions with respect to the variational parameters at convergence. This gives

0(Brbs)

B+ = {<P4(°03 B1)P4(cos B12)>z,, — {Pslcos B>z, 0'4}

x {z{P4(cos B1)*Dz, — (z — DI{P4lcos B1)*)z,,
+ (P4(cos B1)P4(cos B2)z,,]
+ (2 — 2){Py(cos B,)>3,} 1. (26)

The numerical part of the problem is tackled by direct minimization of the free
energy {equation (19)) in terms of the variational parameter. The MINUIT package
from the CERN library [21] is used for this purpose. Calculation of the pseudo-
partition Z,,, equation (20), can be reduced, after a simple change of variables, to a
three dimensional integration. The minimization process is relatively time consum-
ing, since these integrations have to be repeatedly performed at every step of the
minimization process. The calculation is performed using a 32 point gaussian quad-
rature formula in each dimension and simplified exploiting as far as possible the
symmetry of the integrand. Consistency checks have been run to ensure that the
solution obtained is a true minimum and that sufficient numerical accuracy has
been achieved.

4. Results and discussion

Here we present the results of the 10 x 10 x 10 and 6 x 6 x 6 CMC and of the
10 x 10 x 10 PBMC simulations and compare them with the two site cluster find-
ings. As we shall see in detail, the system undergoes an orientational phase tran-
sition at a reduced temperature T* = kT/e around 0-650. In this transition region
the simulations presented some difficulties of convergence and very long runs were
required. For the PBMC simulation we have used at least 8000 equilibration cycles
far from the transition and 18000 in the pseudo-critical region. For the two CMC
simulations we have discarded at least 11000 and 20000 equilibration cycles before
starting production respectively when far or near the transition. In figure 3 we show
the evolution of the energy per particle U* = U/N¢ as a function of the number of
cycles at a temperature below, near and above the transition. We indicate with an
arrow the beginning of the production sequence. The significant increase of fluctua-
tions at the middle temperature is readily apparent.
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Figure 3. Evolution of the energy U* with Monte Carlo cycles for a temperature below,
near and above the transition, i.e. T* = 0-580 (black dots), T* = 0-640 (triangles) and
T* = 0-660 (squares), as obtained by the CMC method on a 10 x 10 x 10 lattice. The
start of the production run is indicated by the arrow.

Apart from equilibration, production runs were also of varying length, according
to the distance from the transition. Close to the phase change sequences as long as
100 kcycles have been used for the 6 x 6 x 6 lattice and for the PBMC simulation.
Runs were up to 70 kcycles for the 10 x 10 x 10 CMC simulation. Each calculation
was divided in chains of 1000 to 2000 cycles. Statistical errors were estimated as
standard deviations from the average over these runs. During the production run
various observables have been calculated in addition to the internal energy and
second rank order parameters calculated at every cycle as already described. Every
property of interest, 4, is evaluated at every cycle. After a certain number of cycles
m; (typically between 1000 and 2000) an average 4’ is calculated thus providing an
effective coarse graining of the trajectory. A further grand average is then computed
as the weighted average over M such supposedly uncorrelated segments. The atten-
dant weighted standard deviation from the average o, is also calculated and gives
the error estimates shown in the figures. We have calculated for each simulation
energy, second and fourth rank order parameters. Pair correlation coefficients again
of second and fourth rank have been calculated at selected temperatures.

4.1. Heat capacity and phase transition

The heat capacity of the system has been evaluated from the internal energy
{Uy>. Although conceptually this just requires a numerical differentiation, the
straightforward procedure turns out to be quite complicated in practice, since we
have data affected by some numerical simulation error as well as a very rapid
change of the energy in a small temperature interval, corresponding to the dis-
ordering phenomena. Thus, on one hand, we would need to smooth the data to
minimize the spurious effects of ‘experimental’ noise, while on the other we would
call for precautions to avoid a smearing out of the C§ peak. Here, as in previous
work [22], we take the view of treating the whole temperature interval at once and
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we obtain the heat capacity by solving the integral equation (in reduced units)

T*
UXT*) = U(T3‘)+J dT* C¥T¥). 27
To*
with an inversion method. The energies determined at a set of temperatures, U*(T%*)
are used to build a M components vector of reduced energy differences u. We can
thus write

= f dT* C¥T*) (28)
(i)

where the integral is extended to the ith energy interval. Choosing to calculate C¥ at
a grid of K temperatures and employing a suitable numerical integration formula
we reduce the integral equation to the matrix equation

C=Wu (29)

where W' is the generalized inverse [23] of the weights matrix W for the chosen
numerical integration procedure. Here we have taken Simpson’s integration formula
and calculated W' according to Rust et al. [23]. The heat capacity has also been
calculated independently by interpolating and smoothing the energy data using a
five point orthogonal formula before performing a standard numerical differentia-
tion. For the present system the results are similar to the previous ones. The esti-
mate of errors in heat capacity calculations is rather complicated because of the
numerical schemes employed. We have thus adopted the following simulation pro-
cedure. First we generate a rather large (here 100) number of plausible energy vs.
temperature curves by sampling energy values at each temperature from a gaussian
distribution of width given by the known standard deviation from the mean at that
point. We then repeat the heat capacity calculation for every curve and obtain a set
of C¥ values whose average and standard deviation are our final reported results.
The heat capacity and standard deviation errors obtained in this way are given in
figure 4 for the various systems studied. We also show as the continuous line the
two site cluster theory predictions.

The temperature of transition from nematic to isotropic is located by determin-
ing the maximum in the heat capacity as a function of temperature. We notice that
the specific heat anomaly is very sharp for the P, potential and is in a broad sense
fairly similar for all the methods employed. However, the Cluster Monte Carlo
method gives the most pronounced peak in C¥ and thus the easiest location of the
transition. The small 6 x 6 x 6 system treated with cluster boundary conditions
gives results comparable to the PBMC 10 x 10 x 10. The transition temperatures
and the heat capacity are reported in the table.

The simulation on the small system of 216 particles, which is quite fast, allows
an accurate location of the transition, as seen from the table. We see that the two
site cluster theory overestimates the transition, but that, in contrast to the molecular
field theory, it yields a value comparable to the simulations. Thus it predicts a first
order phase transition at T* = 0-663 (3 per cent increase over the CMC result), as
compared to a value of 0-751 (16 per cent increase) obtained from mean field theory.
The character of the transition signalled by the MC simulation is consistent with
first order behaviour. We notice that the aim of the present paper is not to establish
this first order character beyond doubt. Indeed a finite size scaling study would be
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The transition temperatures (T§)c, and (T%;), obtained from the heat capacity and order parameter
derivatives. The peak values C}, and [d{P,)/dT*],,;, are also reported. The order parameters
(P )y for the PBMC and CMC simulations are (P, », and (P, ) respectively as described in the

text.

Method (TR, Conax P P (T%o [d<{P;>/dT*}pin
PBMC (103) 0-645 + 0-05 30+2 0514007 058 +008 0-645 + 0-05 —19-8 + 0-09
CMC (63) 0-640 + 0-08 39+1 059 + 007 064 +004 0635+ 005 —172+ 06
CMC (103) 0:650 £+ 0-05 53+1 0-45 + 0-08 0-54 +£ 0-06 0645 + 0-05 —253+06
MF 0-751 e 0-430 0-561 — —
TSC 0-663 — 0-464 0-584 e —

required for that. However, we notice that the first order character of the transition
i3 enhanced in the P, model as compared to the more familiar P, (Lebwohl-Lasher
model). This is consistently indicated by mean field and two site cluster theory as
well as simulations on lattices of the same size (cf. [17] and references therein).

4.2. Long range order parameters {P,>, {P,>

We have calculated second and fourth rank order parameters (P, (P,> for
each simulation. The second rank order parameter {P,), obtained as the largest
eigenvalue of the ordering matrix is shown as the open symbols in figures 5 (a)(c).
As we know [7] this order parameter quantifies alignment with respect to the
instantaneous director. We see an abrupt change of the order parameter at the
transition for all the systems. In figure 5(a) we also show as the full squares the same
quantity {P,)>, obtained from a separate simulation run in a cooling sequence
starting from an isotropic phase. We see that very little hysteresis is observed and
that the results of the two simulations are practically superimposable. This provides
a check of the equilibration procedure and of the overall reliability of the calcu-
lations. One of the characteristics of the CMC method is the introduction of a
director for the ghost particles and thus implicitly of a symmetry breaking direction
which can be used to compute order parameters as

P> =3 (% Puos 1), (30)

These laboratory order parameters are shown in figures 5(b), (c) as the full symbols.
We note the close agreement of the order parameters calculated in the two ways for
the nematic phase. In the isotropic region the laboratory order parameter is essen-
tially zero even for the small 6 x 6 x 6. We also plot in the same figures the mean
field (dashed line) and the two site cluster predictions. We see that for this system
the TSC method offers a good approximation to the temperature variation of (P, .
The abrupt change of order parameter, as well as the heat capacity peak seen earlier
on are suggestive of a first order transition. Further insight is given by an exami-
nation of the spread of values of the order parameters at the different temperatures.
In figure 6 we present histograms of the frequency of occurrence of {P,)>, and {P,>,
from the PBMC simulation. It seems quite clear, especially from the fourth rank
order parameter, that the system does not gradually evolve from order to disorder
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PBMC (a), 6 x 6 x 6 CMC (b) and 10 x 10 x 10 lattice CMC (c), represented with
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CMC simulations (b), (¢) and instead (P,), for a PBMC simulation started from
isotropic (a). We also show the two site cluster (continuous line) and mean field theory
curve (dashed lines).
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Figure 6. Histograms of the frequency of occurrences of the second and fourth rank order
parameters {P,>; (a) and {(P,>, (b) as obtained from PBMC on the 10 x 10 x 10
lattice at the series of temperatures T* indicated.

as the temperature increases. Rather the distribution of observed values is very well
defined, with no long tail encompassing the nematic and isotropic value as observed
in the Lebwohl-Lasher model [17]. The system jumps discontinuously, to our
resolution, from a well ordered to a disordered state at a temperature between
T* = 0-645 and T* = 0-650. The location of the phase transition is also confirmed
by the peak in the derivative of the order parameter versus temperature given in the
table. Our estimated values for the order parameters at the transition are reported
in the table. The errors are quite large since the decay to zero is very steep.
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It is interesting to plot (P,)> against {P,)> to see if the peculiar behaviour
obtained in molecular field theory [1] is borne out by the simulations. In figure 7 we
present the results for the three simulations together with the molecular field curve.
There is good agreement in all cases, with the curve having the same characteristic
shape and being quite different from, e.g., that of the Lebwohl-Lasher model [17].
The two site cluster results are shown in figure 8 as the circles and we see that once
again they are confirming the results obtained from molecular field theory [1]
reported as the continuous curve. In particular we see that in all cases there is a
temperature region where (P,) is greater than (P,). The (P, vs. (P, curve
obtained using TSC theory is essentially the same as that obtained from molecular
field theory. Thus it seems worth while to try and find an analytic approximation to
the curve, based on the known integral representation obtained from molecular field
theory [24]. This theory [1] predicts the effective potential to be

—U(cos B)/kT = a,P4(cos B). (31)
We start by Taylor expanding the expressions for (P, and (P,), ie.

J " dp sin BP (cos B) exp {a, P,(cos B)}
0 , L=24, (32)

Iﬂ dp sin B exp {a, P,(cos B)}

0

<PL>=

with respect to a, . This gives the first few terms as

10aﬁ+10ai+ 1010a% 3 83990a;
693 ~ 3003 26189163 909431523

745490a$ + 2044355710a; +
70475037633 © 1626164510023053

<P2>=

(33)

and
a, 9a2 1367a; 457a% 119776729a;

Pa> =5 * 1001 ~ 1378377 * 2909907 T 5426577897741

4843948 + 94079688551a; 7
16326461151  106629930014368761

(34)

Reversion of the series for (P,) gives a, in terms of {P,), which substituted in
equation (33) gives {(P,) in terms of (P, and by further reversion

77 69 7794479
(P = %0 (POM? —— (P> +

260 1007760,/(770)
This simple power series in \/ {P,> gives a good representation of the curve for
{P,> up to 0.9. In figure 8 we show the analytical approximation to the (P,) vs.
{P,> curve from the truncation in (35) (dashed line) and the curve obtained by
direct numerical integration (continuous line).

P+ ... (35

4.3. Pair properties

We have calculated the second and fourth rank pair correlation coefficients G,(r)
and G,(r),
Gy(r) = (Pylcos B;)), (36)
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giving the orientational correlation between two particles i and j separated by a
distance r. We have seen elsewhere that these represent the first two coefficients in
the expansion of the rotationally invariant angular correlation function [7, 17]. The
calculation of pair correlations is very time consuming and has only been performed
at a few selected temperatures. As an illustration we show in figure 9 G,(r) as
obtained from the CMC simulation of the 10 x 10 x 10 system at a temperature
below (T* = 0-500) and above (T* = 0-790) the transition. We have joined the
points by the continuous line just as a guide to the eye. We see that the decrease of
orientational correlation is quite regular, In the nematic the decay is to the usual
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Figure 7. The fourth rank order parameter {P,)», as obtained from 10 x 10 x 10 lattice
PBMC (a) 6 x 6 x 6 CMC (b), and 10 x 10 x 10 lattice CMC (c) plotted against
{P,>,. We also show the molecular field (or two site cluster) curve (continuous line).
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Figure 8. The fourth rank order parameter (P, plotted vs. {P,>. We show the molecular
field curve as the continuous line and the two site cluster results as circles. We also
show the analytical approximation in (35) (dashed line).
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Figure 9. The second rank pair correlation coefficient plotted against separation r in lattice
units as obtained from the CMC simulation with N = 1000 particles at T* = 0-500 (a)
and 0-790 (b). A line is drawn through the points just to guide the eye. The symbols
indicate the two site cluster result for the nearest neighbours value.

(=)

plateau (P,>? [7]. In the isotropic phase the correlation quickly decays to zero. The
two site cluster results for the nearest neighbours correlation, shown by the symbols,
indicate a fair agreement. However, it is worth noticing that the decay of G,(r) is so
fast that even at nearest neighbours distance we are already close to the long range
limit indicated by the plateau.

A more interesting comparison is that in figure 10 where we present the tem-
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Figure 10. The second and fourth rank short range order parameters ¢, (continuous line),
o, (dashed line) obtained from two site cluster theory plotted against reduced tem-
perature. The symbols represent the 10 x 10 x 10 CMC simulation results for o,
(square) and o, (hour glass).
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perature variation of the short range order parameters ¢, = G,(a), 0, = G4 (a) as
obtained from two site cluster theory and from the CMC (10 x 10 x 10) simulation.
We observe that TSC predicts the fourth rank nearest neighbours correlation to
become larger than the second rank one at a high enough temperature. Moreover
g, is predicted to be bigger than g, above the transition. Both these predictions are
supported by the simulation and the agreement between the two sets of results is
quite good.

5. Conclusions

The results of our simulations are consistent with a first order nematic-isotropic
transition. The transition temperature is in good agreement with that predicted by
two site cluster theory, while that obtained from molecular field theory is roughly 20
per cent too high. The results for the second and fourth rank order parameters
confirm instead both the molecular field and two site cluster findings. Indeed the
{P,> vs. {P,> curve obtained from simulation is similar for molecular field, two site
cluster and Monte Carlo. It indicates a dominant P, character of the effective
potential and broadly agrees with the experimental data of ref. [4-6]. The short
range order parameter of fourth rank can also be greater than the second rank ones
in a temperature region near the transition. This indicates a tendency of the particles
to lie not only parallel but also perpendicular to one another both at short and long
distance.

All calculations have been performed on a cluster of two DEC VAX 11-780
mini-computers at Dip. Fisica-INFN, Bologna and on a VAX 11-780 and VAX
station at Dip. Chimica Fisica. C. Z. thanks C.N.R. and Min. P.I. for grants towards
cost and maintenance of the latter systems.
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