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Monte Carlo simulations of polarizing microscope textures for confined nematic 
droplets are presented. We consider uniaxial and biaxial cases with various 
boundary conditions and different values of the molecular biaxiality. The 
analysis of these optical textures should be of interest in assigning and 
characterizing biaxial nematic system, an issue of great current interest. 
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INTRODUCTION 

 
Lattice spin models consist of systems of interacting centers 

(“spins")  placed at the sites of a certain regular lattice. They have 

been the first successful models to simulate the orientational 

ordering and the clearing transition of liquid crystals (c.f. the 

pioneering work of Lebwohl and Lasher (LL) [1]). As long as the 

properties of interest are purely orientational, there are several  
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advantages in using simple lattice models, with respect to more 

realistic potentials, like those employed in the molecular level 

approaches, with translational degrees of freedom, or in the 

atomistic simulations [2] and particularly the possibility of 

performing “computer experiments” on a larger number (often 

102 - 103 times larger!)  of particles.  This is particularly useful 

when the system is confined and the number of molecules of the 

sample is finite, albeit large, so that periodic boundary conditions 

cannot be employed. We have shown that this technique is useful 

in investigating sub-micron droplets with fixed (homeotropic and 

planar) surface anchoring mimicking polymer dispersed liquid 

crystals (PDLC), twisted nematic displays and thin nematic films 

[3].  The large number of particles which can be simulated on a 

lattice allows us also to simulate the optical textures, as can be 

obtained by a polarized microscopy experiment, with a sufficient 

number of pixels.  

Biaxial nematics are currently a subject of great interest  [4,5] and  

the question of how to identify a biaxial nematic is still a major 

problem.   One of classical approaches is to examine the optical 

texture between crossed polarizers and a suggestion originally 

made by deGennes [6] was that, due to the different symmetry, 

biaxial nematics should present only two brushes stable defects in 

schlieren films. Experiments  by Chandrasekhar et. al [7]  and, 

more recently, investigations on lyotropic [8] and thermotropic 

[4,5,9] systems seem to support this hypothesis which we have also 
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verified by computer simulations of  a schlieren texture, at least in 

some biaxial nematic films [10]. The problem of the molecular 

organization and of the optical texture of biaxial nematics in 

spherical droplets is also of interest in view of the expected 

differences in topological defect structure [11]. In particular a point 

hedgehog central defect should not be stable in a biaxial nematic 

[11], differently from the uniaxial case. Here we shall consider 

droplets formed by either uniaxial or biaxial nematics devoting 

particular attention to the less studied biaxial nematic case and to 

the differences from the uniaxial one, including the presence of a 

hedgehog defect.  

 
THE MODEL DROPLETS 

 

Our model biaxial and uniaxial nematics are obtained from a 

discretized version of the orientational biaxial potential put 

forward many years ago by Luckhurst et al.  [12,13]  and whose 

phase diagram has already been studied in detail by us through 

extensive computer simulations of bulk systems [14]. This lattice 

model reproduces the rich phase diagram of a biaxial nematic 

system with isotropic, uniaxial and biaxial phases and it reduces to 

the well known Lebwohl-Lasher (LL) uniaxial one [1] for nematics 

when the molecular biaxiality vanishes. The biaxial model 

Hamiltonian is the following: 
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UN =(1/2 )∑  Φij    + J   ∑ Φij 
          i,j∈ F            i∈F 
            i≠j                  j∈ S 

(1) 

  

where F, S  are the set of particles in the bulk and at the surfaces, 

respectively,  and  the  parameter J models the  strength of the 

coupling with the surfaces.  The particles interact through the 

second rank  attractive pair potential: 
 

Φij = - ε ij ⎨ P2 (cos β ij ) + 2 λ [ R02
2(ωij) + R20

2(ωij) ]  

+ 4 λ2 R22
2(ωij) ⎬ 

(2) 

where εij  is a positive constant, ε, for nearest neighbour molecules 

i and  j and zero otherwise,  ω ≡ (α,β,γ) is the set of  Euler angles 

specifying molecular orientations and  Rmn
L are  symmetrized 

combinations of  Wigner functions [15]. The biaxiality parameter λ 

takes into account the deviation from molecular cylindrical  

symmetry, so that when  λ is  different from zero the particles tend  

to align not only their major axis, but also their short ones. 

While in simulating bulk systems [13,14] periodic boundary 

conditions are employed, in the case of confinement the boundaries 

are implemented by considering additional layers of  particles, kept 

fixed during the simulation,  with suitable orientations chosen to 

mimic the desired surface alignment. In previous work we have 

studied uniaxial nematic droplets, employing an approximately 

spherical sample carved from a cubic lattice,  with radial, bipolar 

and toroidal  boundary conditions [16] and thin films with hybrid 
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[17] and schlieren anchoring geometries [10]. Here we present an 

investigation of biaxial nematic droplets with various selected 

boundary conditions. The starting configurations of the lattice were 

chosen to be completely aligned along the z direction and the 

evolution of the system was followed according to the classic 

Metropolis Monte Carlo procedure [18]. Polarizing microscope 

textures were simulated by means of a Müller matrix approach  

[19], assuming the molecular domains represented by the spins to 

act as retarders on the light propagating through the sample [20]. 

 

SIMULATIONS AND RESULTS  

 

All the simulations for the various model droplets have been 

performed on samples carved from a 50×50×50 cubic lattice and 

containing N=54474 particles. The parameter J, denoting the 

coupling with the surface, is taken equal to one, which means that 

the interaction between the nematic and the surrounding polymer 

has the same strength of  the nematic-nematic interaction. The 

following parameters were employed for computing the optical 

textures: droplet diameter d = 5.3μm,  ordinary and extraordinary 

refractive indices no = 1.5 and ne = 1.66,  and light  wavelength 

λo = 545nm. 

As mentioned before we have investigated uniaxial and biaxial 

droplets with different anchoring at the surfaces and now we report 

results for  the various cases studied. 
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Uniaxial nematic droplets 

The first case we present is that of a droplet with radial boundary 

conditions, where the spins at the surface are directed towards the 

centre of the sphere. 

 
 

Figure 1.  Simulated  polarized microscopy images as obtained from Monte 
Carlo configurations of a uniaxial nematic droplet with radial boundary 
conditions carved from a 50×50×50 lattice at the reduced temperature T* = 0.1.  
The axis on top indicate the observer point of view together with the orientation 
of the crossed polarizers (P, A).  The upper images are taken after  0, 5000, 
10000, 20000 and 60000 MC cycles with the sample  between crossed polarizers 
left to right. The bottom right frame indicates the image after 60000 MC cycle 
as observed between circular  polarizers  (P, A) (bottom left sketch). 
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We have simulated the optical textures as observed between 

crossed and  circular polarizers. The crossed polarizers textures are 

quite similar to those observed in real experiments with the typical 

cross pattern, see, e.g. [20,21]. In the case of circular polarizers the 

core of the droplet is also dark, consistently with the presence of an 

aligned region, while the maximum in the light transmission 

appears in an intermediate position of the droplet radius and close 

to the surface.  In fact the distribution of maxima and minima in 

the optical textures, shown in Fig. 2, depends only on the distance 

from the centre of the droplet.  

IT
ρ 

ξ 
 

 Figure 2. The intensity variation as ξ deviates from the centre.  
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This means that the local optical axis orientation, i.e. its spherical 

coordinates (sinϕ cosθ,  sinϕ sinθ,  cosϕ), do not depend on Z but 

only on the distance from the centre of the projection of the optical 

axis onto the XY plane. The transmitted light intensity  I Tρ is then: 

I Tρ= ½ sin2⎨ n0 [1-ne (ne
2(1-ξ2)+ n0

2ξ2)-1/2] L (1+ ξ2)1/2⎬           (3) 

Where L is the droplet radius and ρ = Lξ = √(x2+y2) is the distance 

from the centre of the particle having (x, y) coordinates. 

 

 
Figure 3. Simulated optical patterns for a droplets containing biaxial particles 
(λ = 0.2). The boundary conditions are radial for the long molecular axis and 
random for the short one. The images (from top left to bottom right) are taken at 
0, 20, 50, 100, 200, 300, 400 and 500 MC kcycles respectively. 
 

Biaxial nematic droplets 
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We have studied nematic droplets with three values of  molecular 

biaxiality, i.e. λ = 0.2,  0.25 and λ = 0.3 and two different boundary 

conditions. The first case presented here is that of a droplet formed 

by particles with biaxiality λ = 0.2 and where the molecules at the 

surface have their long axis directed radially toward the centre of 

the sphere while the short axis are tangent to the sphere and 

randomly oriented. We started from a configuration where all the 

long molecular axes were vertically aligned along Z and we have 

performed very long runs reaching a total amount of  500000 MC 

cycles.  

 

   
 

Figure 4.  Droplets containing particles with different  molecular biaxiality 
(λ = 0.2, 0.25, 0.3 from left to right) with  radial boundary conditions for the 
long molecular axis and bipolar for the short one. The optical textures  are taken 
after 60000 MC cycles. The upper sketch indicates the observer point of view 
together with the orientation of the crossed polarizers (P,A). 
 

The results, reported in Fig. 3 show that the pattern changes from a 

configuration similar to the uniaxial case, where at the centre of the 

droplet a four leaves point defect is present, to a final pattern 

where the defect tends to move to the surface according to the 
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predictions by Mermin [11], Kurik and Lavrentovich [22] and 

Sukumaran and Ranganath [23].  

We have then examined a droplet with a different type of boundary 

conditions: radial for the long axis and bipolar (i.e. directed along 

the local meridians while being tangential to the surface) for the 

short ones. In this case the dependence on the molecular biaxiality 

has been examined  considering three different values of λ : 

λ = 0.2, 0.25, 0.30 . The results are presented in Fig. 4 and Fig. 5. 
 

   

   
 

Figure 5. Side view snapshots of the central layer for the  long (top) and short 
(bottom) molecular axes for different molecular biaxiality (λ = 0.20, 0.25, 0.30 
from left to right) , corresponding to the images shown in Fig 4.  
 

The snapshots of the central layer of the droplet,  shown in Fig. 5, 

are consistent with the presence of a boojum at the surface. In 

particular the snapshots of the long axes configurations (Fig. 5 top) 

are consistent with the fountain configuration predicted in 



BIAXIAL NEMATIC DROPLETS: A MC STUDY 

[11,22,23]. As the molecular biaxiality increases the fountain 

width increases. Correspondingly the short axes snapshots (bottom 

plates in Fig.5) change.  
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Figure 6. Uniaxial and biaxial order parameters versus lattice units, starting 
from the centre of the droplet, for the case presented in Fig. 4 and Fig. 5 The 
molecular biaxiality is λ = 0.2 continuous line, λ = 0.25 dashed line, λ = 0.3 
dotted line. 
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We have also calculated the full set of order parameters [6] to 

quantify the different kind of ordering across the sample. To do 

that we have divided the droplet  in concentric shells, starting from 

the centre of the system, and calculated the observables by 

averaging only on the molecules belonging to the chosen shell.   

The results, shown in Fig. 6, indicate that there is a uniaxial 

nematic ordering at the center of the droplet, which increases as the 

molecular biaxiality increases. This quantitative determination is 

qualitatively evident by looking at the snapshots in Fig. 5. 

 

CONCLUSIONS  

 

Lattice spin models, now a classical tool in the study of a variety of 

liquid crystalline systems, offer interesting opportunities for 

investigating the molecular organization of anisotropic materials 

and their optical textures. This is particularly helpful for 

investigating the structures of topological defects in confined 

systems. Here we have shown some cases of simulations of models 

for polymer dispersed  liquid crystals formed by uniaxial and 

biaxial molecules.  The effect of the surface alignments combined 

with the molecular biaxiality can produce different molecular 

organizations and accordingly different kinds of topological 

defects. Lattice models are also useful to describe the molecular 

ordering when simulated images, similar to the real experimental 

ones, are found (as for the uniaxial cases) or to predict the 
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polarized optical patterns for experiments which have not yet been 

performed (as for the biaxial nematic droplets).  

 

Acknowledgements 
We acknowledge support by INFN grant I.S. BO12 (CC and PP); 

MIUR: PRIN Cristalli Liquidi, FIRB RBNE01P4JF and University 

of Bologna (CZ) . 
 

References 

 
1. P.A. Lebwohl and G. Lasher,   Phys. Rev. A,  6 , 426 (1972). 
2. P. Pasini and C. Zannoni (Eds.) Advances in the Computer 

simulations of Liquid  Crystals (Kluwer, Dordrecht, 2000). 
3. C. Chiccoli, I. Feruli, P. Pasini, and C. Zannoni, in Defects in 

Liquid  Crystals: Computer simulations, Theory and 
Experiments O.D. Lavrentovich, P. Pasini, C. Zannoni and S. 
Žumer (Eds.) (Kluwer, Dordrecht, 2001)  Ch.4. 

4. L.A. Madsen, T.J. Dingemans, M. Nakata and E.T. Samulski, 
Phys. Rev. Lett. 92, 145505 (2004) 

5.  B.R. Acharya, A. Primak and S. Kumar, Phys. Rev. Lett. 92, 
145506-1 (2004). 

6. P.G. De Gennes, The Physics of Liquid Crystals, (Clarendon 
Press, Oxford, 1972). 

7. S. Chandrasekhar  et al., Current Sci., 75, 1042 (1998). 
8. A.R. Sampaio, A.J. Palangana and R.C. Vescovili, Mol. Cryst. 

Liq. Cryst., 408, 44 (2004). 
9. T.J. Dingemans and E.T. Samulski, Liq. Cryst. 27, 131 (2000). 
10. C. Chiccoli, I. Feruli, O.D. Lavrentovich, P. Pasini, S. 

Shiyanovskii and C. Zannoni, Phys. Rev. E, 66, 030701 (2002). 
11. N. Mermin, Rev. Mod. Phys. 51, 647 (1979). 
12. G.R. Luckhurst, C. Zannoni, P.L. Nordio, U. Segre,  Mol. 

Phys., 30, 1345 (1975). 
13. G.R. Luckhurst and S. Romano,  Mol. Phys. 40, 129 (1980) 



C. CHICCOLI et al. 

14. F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni,  
Phys. Rev. Lett., 75,   1803 (1995). 

15. M.E. Rose,  Elementary Theory of Angular Momentum, Wiley, 
New York ,  (1957). 

16. C. Chiccoli, P. Pasini, F. Semeria, E. Berggren, C. Zannoni: 
Mol. Cryst. Liq. Cryst. 266, 241 (1995). 

17. C. Chiccoli, O.D. Lavrentovich, P. Pasini and C. Zannoni, 
Phys. Rev. Lett., 79, 4401  (1997). 

18. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. 
Teller and E. Teller,  J. Chem.  Phys.  21, 1087 (1953). 

19. A. Killian, Liq. Cryst., 14, 1189 (1993). 
20. R. Ondris-Crawford, E.P. Boyko, B.G. Wagner, J. H. Erdmann, 

S. Žumer and J.W. Doane, J. Appl. Phys 69, 6380 (1991). 
21. D. Harrison and M.R. Fisch, Liq. Cryst. 27, 737 (2000) and 

references therein. 
22. M.V. Kurik and O.D. Lavrentovich, Sov. Phys. Usp. 31, 196 

(1988). 
23. S. Sukumaran and G.S. Ranganath, J. Phys II France 7, 583 

(1997). 
 
 
 




