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We present Monte Carlo simulations of nematic droplets with radial boundary conditions and we investigate the orientational 
order and the molecular organizations in these systems that mimic polymer dispersed liquid crystals (PDLC). 

1. Introduction 

Polymer dispersed liquid crystals (PDLC) formed 
of liquid crystal droplets embedded in a polymer 
matrix have recently been prepared [ 1,2] and have 
immediately received a great deal of attention, both 
in view of their applications in large area displays 
[ 3,4] and of their fundamental interest concerning 
the behaviour of mesophases in a restricted envi- 
ronment. The size of liquid crystal droplets can be 
adjusted and typically ranges from radii of a few 
hundred angstroms to micron size [ 51. The orien- 
tation of the nematic at the droplet boundary can also 
be controlled to a good extent by a suitable choice of 
the host polymer. For example radial, toroidal and 
bipolar boundary conditions have been realized [ l- 
41. One of the most interesting aspects in very small 
droplets is the suppression of the first order ne- 
matic-isotropic transition and its replacement with 
a continuous transition shifted to lower temperature 
[ 6 1. Such a phenomenon has been experimentally 
observed first in nematics adsorbed in porous silica 
[ 71. From the point of view of computer simula- 
tions PDLC systems offer an interesting opportunity 
because the size of the dispersed droplets can be so 

small as to contain just a few thousand molecules, 
thus not too far from the range accessible to simu- 
lations and in any case reducing the usual need for 
extrapolation to macroscopic dimensions. In this 
communication we wish to show that computer sim- 
ulations can indeed be particularly suited for treat- 
ing this problem and we present the results of a first 
application to the case of radial boundary conditions 
(RBC). 

We have studied the problem using Monte Carlo 
simulation of an approximate spherical sample 
carved from a cubic lattice of particles interacting 
through a Lebwohl-Lasher (LL) potential [g-lo]. 
The “bulk” LL model has been studied with a va- 
riety of theoretical techniques as well by periodic 
boundary conditions (PBC) [ 8,9] and cluster Monte 
Carlo (CMC) [lo] simulations and it has been 
found to give a weak first order orientational phase 
transition T * = kT/t = 1.12 13 [ 9 1, with features 
similar to those of real nematics. In the simulation 
of a nematic droplet we do not really want to elim- 
inate the effect of boundaries but rather see how they 
affect the behaviour of the system. We could think 
of the effect of surface as determining the orienta- 
tion of molecules at the boundary independently from 
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what happens inside the sample and independently 
of temperature. Thus we have chosen to mimic the 
effect of the polymer on the liquid crystal by assum- 
ing that the orientation of the first shell of particles 
outside the drop (i.e. of ghosts) is fixed along a di- 
rection dictated by the boundaries. The effect of 
boundaries on the simulation is in principle distinct 
from that of finite size, simply due to limited num- 
ber of particles. To examine this point we have used 
our cluster Monte Carlo method [ 10 1, with the same 
number of particles but with updating boundary 
conditions to see how well macroscopic behaviour 
can be a result of the different ways of treating 
boundaries. 

Another point of great interest is that of the con- 
figurations adopted by the director in the systems. 
This problem is normally tackled by elastic type cal- 
culations [ 11,12 ] thus on one hand employing mac- 
roscopic continuum concepts that have to be proved 
to be valid in such small systems and on the other 
masking the molecular aspects of the problem. Here 
again we think computer simulations can be quite 
useful to visualize molecular organizations at differ- 
ent temperatures. 

2. The simulation 

We consider a virtual sphere of a given radius 
measured from a point at the centre of the lattice and 
consider as belonging to the sample only the parti- 
cles at positions r, inside the sphere. The jagged 
sphere realized in this way is our model droplet. 
Clearly it is not exactly spherical, but then true cav- 
ities in the polymer will hardly be spherical too. The 
particles at the cubic lattice sites interact through the 
attractive nearest neighbour Lebwohl-Lasher [ 81 
pair potential: 

U,J = - cijp2 ( cos PZJ) > (1) 

where E,, is a positive constant, t, for nearest neigh- 
bour particles i and j, p,, is the angle between the axis 
of these two molecules. As already mentioned we 
represent the effect of the boundaries by keeping the 
orientation of the first shell of ghosts outside the drop 
as fixed, in the present case with the long axis point- 
ing to the centre of the lattice. 

The calculation is started at the lowest tempera- 
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ture from a system with all the molecules pointing 
toward the centre. At higher temperature we start 
from an already equilibrated configuration at a lower 
temperature. The lattice is updated using the Me- 
tropolis algorithm. Each particle is selected for trial 
move at every cycle using a random shuffling algo- 
rithm [ 9 1. A new trial orientation is then generated 
by a controlled variation from the previous one to 
get a rejection ratio near 0.5. The energy of the sys- 
tem is calculated as a sum of pair interactions ( 1). 
The dimensionless heat capacity C: is obtained by 
differentiating the average energy with respect to 
temperature as previously described [ 13 1. Second 
and fourth rank order parameters ( P2) and ( P4) 
have been calculated by setting up and diagonalizing 
the ordering tensor as discussed in detail earlier [ 9 1. 
We now describe briefly the system studied. We have 
simulated three jagged spherical droplets contained 
in the three cubic lattices with linear dimensions 
L= 10, 16, 26 respectively. This corresponds to 
N= 304, 1568, 76 16 particles inside the sphere and 
to No=200, 576, 1632 ghost respectively. 

3. Results 

In fig. 1 we show the reduced heat capacity 
C*, = CJkN at various droplet sizes. 

We notice that there are no major changes in be- 
haviour and that the peak does slowly increase with 
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Fig. 1. The dimensionless heat capacity of a droplet with RBC 
containing (. ) 304, ( 0 ) 1568 and (0) 76 16 particles as a func- 
tion of reduced temperature T*= kT/c. 
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increasing the number of particles. The peaks are 
centred at T* z 0.99, 1.10, 1.10 and the maxima 
( CV)max are 22.0, ~2.7 and z 3.5 respectively for 
the three lattice sizes studied, with the width at half 
height quite comparable. Although the behaviour of 
the bulk LL model is known [g-lo], we have per- 
formed a complete cluster Monte Carlo simulation 
[ lo] of a LL model for the smallest droplet size, to 
get a reference value for this spherical geometry. In 
this calculation the ghost orientations are generated 
according to the CMC procedure and updated reg- 
ularly. As already mentioned the method constitutes 
an alternative to periodic boundary conditions and 
allows mimicking a bulk system starting from a rel- 
atively small system. Here we obtain a maximum of 
16.2 in dimensionless units at about T* = 1.12. Thus 
the small peak observed with the radial conditions 
is not due to the small number of particles but seems 
to indicate the absence of a true phase transition in 
the nematic droplet. 

It is interesting to look at the second rank order 
parameter of the droplet relative to the instanta- 
neous director (i.e. ( Pz)n) as calculated from the 
ordering matrix diagonalization procedure [ 91. As 
we show in fig. 2 ( Pz)* is very low even in the whole 
temperature range (even at very low temperatures) 
and decreasing with drop size. 

( P2)l actually tends to increase with temperature 
up to the heat capacity anomaly and after that it takes 
on an isotropic-like value. The effect is clearly due 
to the influence of boundary conditions and is illus- 
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trated by the instantaneous configurations in figs. 3 
and 4. 

In fig. 4 we show equatorial sections of the droplet 
for the three sizes studied and at low and high tem- 
perature respectively. The largest droplet shows more 
clearly the central defect at low temperatures and the 
rapid smearing of the boundary condition influence 
at 7*=1.3. 

At low temperatures the particles are mostly ra- 
dially directed and there is very low ordering with 
respect to a unique axis. As the temperature in- 
creases and we arrive near the transition region it be- 
comes possible to acquire an instantaneous director 
and the order referred to that direction grows. In- 
creasing the temperature again the order decreases 
again because the molecular orientations are ran- 
domized (cf. fig. 4). On the other hand the star-like 
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Fig. 2. The second rank order parameter (I’,), versus reduced 
temperature for (. ) 304, ( 0 ) I568 and (0) 76 16 particles. 

Fig. 3. A perspective view of a typical molecular organization for 
a droplet with RBC and N= 304 at reduced temperatures T*=0.2 
and 1.3. 
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Fig. 4. Equatorial sections showing projections of typical instan- 
taneous configurations for N=304 (bottom), 1564 (middle), 
7616 (top) at temperatures T*=0.2 and 1.3. 

configuration at low temperature represents itself a 
kind of regular arrangement and we could try to 
quantify the disordering from a perfectly regular star 
distribution. Thus we introduce a radial order pa- 
rameter ( P2)R as follows: 

(2) 

where u, is the direction cosine of the ith particle and 
rr is its radial vector. In fig. 5 we show the change of 
this order parameter with temperature. 

We see that the change in order parameter now has 
a more familiar appearance, decreasing with tem- 
perature and showing an order-disorder change that 
becomes more pronounced as the number of parti- 
cles increases. 

In conclusion we have shown that MC simulation 
affords a useful way of studying the influence of spe- 
cific boundary conditions in liquid crystal droplets 
as those present in PDLC. The possibility of visu- 
alizing the molecular organization inside the drop- 
lets should be of help in rationalizing the various 
kinds of experiments currently performed on these 
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Fig. 5. The second rank order parameter ( PZ)R referred to the 
local radius plotted versus reduced temperature for (. ) 304, (0 ) 
1568 and (0) 7616 particles. 

important systems. It is worth pointing out that sim- 
ulations also have the advantage of showing how the 
molecular organization changes with temperature. 

We wish to thank MURST and CNR (Rome) for 
supporting this work. 
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