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Abstract  We review our Monte Carlo studies of molecular ordering in nematic lig-
uid crystals with dispersed polymer networks. Starting from the align-
ing effect of a single fiber, we study different network topographies and
investigate regular and random arrays of straight and distorted poly-
mer fibrils. We analyze the aligning ability of rough fibrils, external
field-induced switching, and pretransitional ordering. The simulation
output is used to calculate selected experimental observables: 2H NMR.
spectra, capacitance, and intensity of transmitted polarized light.

Introduction

Polymer networks dispersed in liquid crystalline materials typically
consist of thin fibers (few nanometers thick) or of somewhat thicker
fiber bundles (see Fig. 1). Because of their high surface-to-volume ra-
tio the polymer fibers can inuence orientational ordering of the sur-
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rounding liquid crystal even at low polymer concentrations [1-3]. In
this sense these dispersed systems are similar to “ordinary” confined
systems where the liquid crystalline material is confined to microscopic
cavities like droplets and pores. Apart from exhibiting a variety of in-
teresting ordering- and confinement-related phenomena, liquid crystal-
dispersed polymer networks are promising also for the construction of
electrooptical devices based on the external field-induced switching pro-
cess [4, 3]. The detailed characteristics of this process are closely linked
to the anchoring and ordering conditions at the fiber surface, as well
as to the shape and regularity of the network. Experimentally, these
network properties can be regulated during the network formation (pho-
topolymerization from the monomer-liquid crystal mixture) through var-
ious parameters: monomer solubility, curing temperature, ultra-violet
(UV) light curing intensity, and the degree of orientational ordering in
the liquid-crystalline component [1, 5, 6]. Similar types of network-
like confinement can be achieved also in nematic-silica aerogel systems,
where irregular chains of silica particles play the aligning role of poly-
mer fibers [1]. While thin (nanometric) polymer fibers typically promote
planar surface anchoring along the fiber direction, thicker fibers or fiber
bundles (several tens of nm in diameter) can be treated with surfactants
to yield homeotropic anchoring conditions.

Figure 1. A sketch of the polymer network (right) and the simulation box with the
cylindrical fiber and one of the cylindrical shells (left).

The existing experimental studies were usually accompanied by phe-
nomenological (Landau-de Gennes-type) analyses [1, 2, 4, 3], but so far
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almost nothing has been done for such network-like confinement at the
microscopic level. Tor all these reasons here a thorough microscopic sim-
ulation study of the orientational coupling between polymer fibers and
the surrounding liquid crystal will be presented. Like in the previous
Chapter on PDLC droplets, the analysis will be based on the Lebwohl-
Lasher (LL) lattice spin model [7], focusing on polymer networks with
a well-defined average fiber direction, and on effects ol roughness at
the fiber surface [8]. Furthermore, for homeotropic anchoring, defects
in nematic ordering due to topological constraints can be expected to
form [9]. Their inner structure will be explored and compared with the
existing phenomenological studies [10, 11]. Moreover, the simulations
of switching in an external field will be presented and the role of net-
work irregularities in switching characteristics (threshold etc.) will be
examined [12]. Finally, paranematic surface-induced ordering above the
bulk nematic-isotropic transition temperature will be explored in the
system. For practical purposes, the simulation output will be expressed
in terms of selected experimental observables: 2H NMR spectra, electric
capacitance, and transmitted intensity of polarized light.

Tn the LI model local orientations of close-packed nematic molecular
clusters are represented by free unit rotors u; (particles) attached to
lattice points of a cubic lattice. The nearest neighbors u; and u; interact
via
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promoting parallel alignment, where ¢ ~ 0.02 ¢V is the interaction
strength. The boundary conditions are defined by fixing a set of “ghost”
particles. Monte Carlo (MC) simulations are then employed to find equi-
librium configurations, following the standard Metropolis scheme [13
15].

1. Aligning ability of the network

Consider a single straight cylindrical fiber oriented along the z-axis.
The shape of the fiber can be defined by carving a jagged cylinder from
the cubic lattice of the LL model and taking all particles that are lying
closer than R — the fiber radius — from the center of the xy-plane
(Fig. 1). The particle orientations in the surface layer of the fiber (ghost
particles) are chosen in agreement with the desired boundary conditions
and arc kept fixed during the simulation. In the simulations reviewed
here the strengths of nematic-nematic and nematic-ghost interactions
were set equal, which corresponds to the strong anchoring limit. Further,
periodic boundary conditions at the simulation box boundaries were
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assumed. Such a set-up in fact corresponds to a regular array of straight
and parallel fibers. Alternatively, if appropriately rescaled, it could also
be interpreted as a colloidal crystal.

In the case of “perfect” anchoring ghost particle orientations were
chosen either along z (a unit vector along the z-axis) for planar an-
choring, or along the local radial unit vector for homeotropic anchor-
ing. For rough fiber surfaces perfect planar or homeotropic ghost ori-
entations were perturbed by additionally reorienting cach of the ghost
particles. The biasing distribution for this random reorientation was
Gaussian in cos 0, where 0 denotes the corresponding polar angle. The
degree of randomness can be quantified by diagonalizing the ordering
matrix @ — 2(3(w; @ uz)y — |) (the average (...), taken over ghosts),
which gives the ghost director and the corresponding order parameter
(P2)g- In all cases the (P,), order parameter is referred to the z-axis,
the fiber direction. Hence, (P,), = 1 and (%), = —0.5 correspond to
perfect planar and homeotropic alignment, respectively, while interme-
diate (but nonzero) values correspond to partial order on the boundary
surface.

The simulation box size was set to 30a x 30a x 30a, which for the
chosen fiber radius (R = 5a, a denoting the lattice spacing) amounts
to 24600 nematic and 840 ghost particles in total. The simulation box
side is larger than the nematic correlation length (< 5 in the tempera-
ture range studied), which is enough to avoid artifacts in ordering due to
periodic boundary conditions. Simulation runs were started from a com-
pletely random (isotropic) orientational configuration not to impose any
preferred orientation in the system. Once the system was equilibrated
(after at least 6 x 107 MC cycles), a sequence of 6.6 x 101 (or more)
successive particle configurations was used to calculate relevant observ-
ables, including 2H NMR spectra following the methodology presented
in the preceding Chapter.

To quantify the degree of ordering with respect to z, it is convenient
to calculate the radial dependence of (P§) = 3 [3{(u; - 2)?), —1]. The
average (...), has to be performed over all nematic particles u; belonging
to the cylindrical layer with radius » (see Iig. 1), and over MC cycles.
Neglecting significant collective molecular reorientation during the MC
evolution, it is instructive to calculate also spatially-resolved director
and order parameter maps n(r;) and S(r;}, respectively, where r; denotes
the position of the ith lattice site. For this purpose the local ordering
matrix Q(r;) = 1(3(u; ©uy)r; — ) was averaged over MC cycles and then
diagonalized, yielding the local value of the order parameter S(r;) and
the corresponding cigenvector — the local director n(r;). Similarly, the
biaxiality map P(r;) can also be deduced from the data.
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1.1 Planar anchoring

Tirst consider a nematic sample at T* — kgT/e — 1.0, with planar
anchoring along the z-axis and with possible deviations from this perfect
alignment, as described above. The (P5) curves shown in Fig. 2 (a)
correspond to a series of polymer fibers whose surface morphology varies
from smooth to rough and disordered, that is from (P), =1 to (P2)g =
0. For perfect planar anchoring ||z the nematic director n is parallel
to z. In this case (P§) becomes a direct measure for S, the standard
nematic order parameter, because n and z coincide. Far enough from
the fiber the value of (P§) approaches &~ 0.6, matching with that of S
in a bulk sample at 7% = 1.0 [16], while close to the fiber there is an
increase in (P%), reflecting the fiber-induced enhancement ol nematic
order. The characteristic length of the nematic order variation at the
given 1™ roughly amounts to ~ 3a.

Studying cases with reduced (imperfect) planar anchoring ||z [Fig. 2(a)],
one can see that at least down to (Pa)y ~ 0.25 the bulk value of (P§)
parameters remains essentially unchanged if compared to the perfect
(P2)g = 1 case. Note that now for, e.g., (P»)y &~ 0.75 the increase of
order close to the fiber is smaller than for (), = 1, and that already
for (P)y & 0.50 (as well as for (P,), = 0.25) the surface degree of order
is somewhat lower than its bulk value. From these observations one can
conclude that the first effect of the partial disorder in surface anchoring
is merely a slight decrease in the degree of nematic order in the vicinity
of the fiber, but that at this point the long-range orienting ability of the
polymer network is not lost. This ability, however, weakens upon fur-
ther decreasing (P)g, but is present at least down to (Pa)y ~ 0.09 (the
corresponding profiles not plotted here). Then only in a sample with a
completely disordering fiber — for (), & 0 — the net orientation of the
nematic for the LL intermolecular potential is completely independent
of the fiber direction. This follows from the behavior of the (P5) order
parameter which now can take any arbitrary value, and from the fact
that the liquid crystal is still nematic, as suggested by a nonzero value of
the S order parameter throughout the sample. Note that the bulk value
of S remains almost unaltered in comparison with, e.g., the (P5), — 1
case. The fact that it is actually slightly lower than the value obtained
for (Pa)g = 1 (& 0.6) can be attributed to slow collective molecular
motion during the production run.

If temperature in the LL model is increased to T% = 1.2, in a bulk
sample the isotropic phase is stable — recall that the nematic-isotropic
(NI) transition takes place at 7%, — 1.1232 [16]. However, like in
PDLC droplets, also in the vicinity of polymer fibers one should expect
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Figure 2. Order parameter (P5) versus r (the distance from the simulation box

center, measured in lattice units @) in a sample containing a single cylindrical fiber
with R = 5a. Planar anchoring along the z-axis; (a) nematic (7 = 1.0) and (b)
isotropic phase (T = 1.2). In the plots each of the curves corresponds to a different
degree of ordering in the ghost particle system: (P2)y =~ 1.0, 0.75, 0.50, 0.25, and 0
(top to bottom).

surface-induced paranematic ordering. For the case of planar anchor-
ing ||z I'ig. 2 (b) shows (P5) profiles (coinciding with S profiles) and in
fact confirms the existence of surface-induced planar ordering. The net
molecular orientation is still along z, as imposed by the fiber, and the
corresponding degree of order decays to zero over a characteristic length
of the order of ¢ =~ 5a.

1.2 Homeotropic anchoring: topological defects

Proceeding now to cases with (P2), < 0, i.e., to perturbed homeotropic
ordering, already for (P,), ~ —0.08 the polymer fiber is able to align
the liquid crystal. Molecules are now aligned perpendicular to z, the
fiber direction, i.c., mainly within the zy-plane, which yields (P5) < 0
for all ». The most interesting case, however, is the one with perfect
homeotropic anchoring. In this case the radial alignment promoted by
the fiber requires formation of topological defects in nematic ordering in
order to satisfy periodic boundary conditions. As shown in the director
map n(r;) (Fig. 3, left), a pair of —% strength defect lines forms along
the fiber and close to the simulation box diagonal.

As concluded from topological considerations (conservation of topo-
logical charge) either a —1 strength disclination line or a pair of 75 lines
can form in the neighborhood of a homeotropic fiber, and this is scen
also in simulation. The —1 line, however, does not seem to be stable and
splits into a pair of —% lines during the MC evolution, even if it is taken
as initial configuration in the simulation run. This agrees with simple
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estimates of defect line free energy where the this energy scales as m?
(where m is the defect strength) [17, 18]. Moreover, a stable “escaped”
structure (bent in the z-direction) could not be observed in the present
simulations. Note that the defects are able to form because anchoring
is rather strong and that for weaker nematic-ghost interaction strength
(or, alternatively, a disordered fiber surface) they vanish. The follow-
ing analysis is relevant not only for fiber network systems, but also for
elongated colloidal particles embedded in a liquid crystal host [9].

ya
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Figure 3. Left: cross section of the director field n(x,y) represented by “stream-
lines”. The shading represents the value of the order parameter S(z,y) (dark values
correspond to low S). A pair of 7§ defects has formed on the diagonal. In the de-
fect core molecules are (on the average) aligned in the wy-plane; ordering is uniaxial
with 5 < 0 and the corresponding eigenvector, n, is directed out of plane (along the
z-axis). Right: eigenvalues of the ordering matrix Q1, Q2, and Qs plotted across the
left defect along the y axis. In the upper panel the order parameter S and biaxiality
P are plotted. The left-right asymmetry with respect to the defect core positioned at
y/a = 20 is due to the presence of the fiber. While S exhibits a simple decrease if the
delect is approached [rom any direction, P shows a more complex crater-like profile.

Tn our simulations, the defect line pair always forms close to one of the
simulation box diagonals although the cross section of the fiber is axially
symmetric (ignoring its jagged shape). This symmetry breaking may be
attributed to the repulsion between defects maximizing the defect-to-
defect distance (recall the periodic boundary conditions), and to a finite-
size effect originating from collective fluctuations, resulting in a tendency
to align the nematic director along the simulation box diagonal. Further,
with increasing temperature, as well as with increasing fiber radius, the
defects move away from the fiber surface [8]. The actual locus of defect
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lines is determined by the subtle interplay between curvature elasticity
and nematic-to-isotropic melting inside the defect core.

The inner structure of a defect line is characterized by variations in
the three eigenvalues of the local ordering matrix Q(r;), @1, @2, and
Qs. The eigenvalues, along with the corresponding eigenvectors, were
obtained by diagonalizing Q(r;) for each of the lattice sites. The scalar
order parameter S, biaxiality P, and director n maps can be derived
from these data, as discussed ecarlier. Fig. 3 (left) shows the director
field and the order parameter map in the plane perpendicular to the
long axis of the fiber. Iig. 3 (right) shows the @1, @2, and Qs-profiles
plotted along the y-axis through the left of the two disclinations. After
passing through the disclination, the ¢); and Q2 components change sign.
Moreover, their positive values are roughly equal to twice the magnitude
of the negative ones, which is attributed to the director rotation by
approximately 7/2 when one crosses the defect along the y axis (the
orientation of the eigensystem changes continuously on passing through
the defect). On the other hand, the @Qs-component does not change
significantly, indicating that the variation in the nematic ordering mostly
occurs in the zy-plane perpendicular to the fiber direction, z.

Alternatively, the @, Q2, and Qs-profiles can be interpreted also
in terms of order parameters S and P (see Fig. 3, right), and the
molecular ordering close to a disclination line can be summarized as
follows. In the very center of the defect molecular ordering is uniaxial
with § < 0 and P — 0. Far cnough from the defect line the nematic
liquid crystal is uniaxial, too, however, with S > 0 and P = 0, as
expected in a homogeneous or in a weakly distorted bulk sample. In the
intermediate ring-like region, nematic ordering is biaxial with P / 0.
These conclusions agree also with results from alignment tensor-based
phenomenological analyses of topological defects both of half-integer [10]
and integer strength [11].

1.3 H NMR spectra

The observations regarding the aligning ability of the fiber can be con-
firmed also by calculating >fT NMR, spectra using the numerical output
from MC simulations. The quadrupolar line splitting

. 3 1
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depends on the angle (r) between the local director and the magnetic
field of the NMR spectrometer, as well as on the local degree of order

S(r), with dwg ~ 100 kHz. Iig. 4 shows the NMR spectra calculated in
the nematic (left, 7" = 1.0) and in the isotropic phase (right, 7% = 1.2),
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with the NMR spectrometer field applied along the fiber direction z.
The calculation was based on generating the relaxation function G(t)
from the MC data and calculating its Fourier transform representing
the spectrum. In this way also effects of homogeneous translational
diffusion were included. Following the methodology applied in the pre-
vious Chapter to PDLC droplets [19], the diffusive molecular motion
was simulated by a random walk on the cubic lattice, performing 1024
diffusion steps per NMR cycle. The effective diffusion constant for such
a random-walk process can be estimated to be D = 256a25wq /37, yield-
ing a root-mean-square molecular displacement of /6Dty — 32a in each
NMR cycle. Here tg — 27 /6w¢ denotes the NMR cycle duration, while
dwq is the quadrupolar splitting. Since this displacement is compa-
rable to the sample size, the calculated NMR spectra are expected to
be highly diffusion-averaged. Note that nematic particle configurations
were updated 10241 times per NMR. cycle — thereby matching with the
natural time scale for fluctuations of molecular long axes. For smooth-
ing purposes, a convolution of the spectra with a Lorentzian kernel of
width & 0.07 dwq was performed. Finally, note that the NMR spectrom-
eter magnetic field is assumed to be weak enough not to align nematic
molecules which indeed is the case for strongly confined systems.

The calculated spectra are shown in Fig. 4. In the nematic phase
with perfect planar anchoring ((P2), = 1) in the spectrum one has two
peaks positioned at wg/dwg ~ £0.6. In the chosen geometry, [wq/dwg|
is supposed to be roughly equal to the value of S, the nematic order pa-
rameter, since the director and the direction of the NMR spectrometer
magnetic field coincide. Indeed, for 7% — 1.0 one finds S ~ 0.6. Trans-
lational diffusion in this case affects the spectra only negligibly: the
nematic director is homogeneous throughout the sample and the degree
of order is enhanced only slightly in the vicinity of the fiber. Therefore,
the effect of diffusion should be merely a slight increase in quadrupolar
splitting, but the resolution of the spectra is not high enough to clearly
see this surface ordering-induced shift.

Proceeding now to fibers with partially disordered anchoring, in the
spectra there is no noticeable change at least down to (P2), ~ 0.25,
reflecting the ability of the polymer network to align the surrounding
liquid crystal along z. In the case when anchoring is completely disor-
dered with (Ps), ~ 0, the spectrum typically still consists of two peaks,
however, the corresponding splitting can be arbitrary because there is
no preferred direction in the system — note that only one of the possible
spectra is plotted. Note also that sometimes during the acquisition of
the G(t) signal slow collective molecular motion can occur, which re-
sults in an increase of the spectral line width. On the other hand, in
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Figure 4. *H NMR spectra; T* = 1.0 (left) and T* = 1.2 (right). Top to bot-
tom: spectra for {P2)y=1.0 (planar), 0.75, 0.5, 0.25, 0 (random), —0.25, and —0.5
(homeotropic). The aligning capability of the network is lost only for (P}, = 0. wz
stands for the Zeeman frequency (also elsewhere).

homeotropic cases with (Fa), < 0, molecular ordering is confined to the
zy-plane. The quadrupolar splitting now decreases by 50% with respect
to perfect planar anchoring because the director is perpendicular to the
spectrometer field direction (see the two spectra in the bottom of I'ig. 4,
left).

In the bulk isotropic phase, however, quadrupolar interactions giving
rise to the wq splitting are averaged out by the rapid molecular motion.
Therefore, ignoring translational diffusion, in a confined system for S ~
0 one should expect a single-peaked spectrum at wg ~ 0, somewhat
broadened by the surface-induced order. The spectra shown in Fig. 4,
right, were calculated assuming fast translational diffusion, and it is
evident that some of them are actually double-peaked. This is a clear
signature of surface-induced paranematic order. In fact, the peak-to-
peak distance decreases with decreasing degree of surface order; compare
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with Fig. 2 (b). For (F»)4 ~ 0 exhibiting no surface order, the spectrum
is again single-peaked. Again, the splitting observed for perfect planar
anchoring roughly amounts to twice the splitting seen in the perfectly
homeotropic case.

2. External field-induced switching

This Section is going to address the external field-induced switching
of the molecular orientation in a nematic with dispersed polymer net-
works. First a regular array of straight and parallel polymer fibers will
be treated, like in aligning ability studies, assuming perfect planar an-
choring. Then we will proceed to more complex network topographies,
with irregularities in fiber positions. At the end, a system ol distorted
and cross-linked fibers will be treated. In all cases the fiber surface will
be assumed smooth, with planar anchoring along the local fiber direc-
tion. The switching process will be monitored by inspecting selected
experimental observables predicted from the simulation output.

E E E
- — —_—

n=0.005 n=0.05 n=0.5

Figure 5. Switching in a regular fiber array: examples of director fields for different
n o B% T =1.0, R = 5a, and w = 1 (yz-cross sections through the fiber center).
From left to right: homogeneous (h), deformed (d), and saturated (s) structure.
Anchoring easy axis is planar and ||z, while the external field E is directed along
y. Note that the d-structure is twisted along the x-axis, while there is no twist in a
simple nematic slab. This, however, does not affect the qualitative analogy of the two
systems.

2.1 Regular fiber array

Let the fiber direction coincide with z, as shown in Fig. 1. An ex-
ternal field applied perpendicular to the fibers (e.g., along the y-axis)
creates a conflict between the aligning tendencies of the fiber array and
of the field; see Fig. 5 (a). Note that switching experiments are usually
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performed in an external electric field, which in anisotropic dielectric
materials requires Maxwell equations to be solved in order to obtain the
local electric field strength E. For simplicity, however, in the following
E will be assumed homogeneous. Alternatively, one could perform a
switching experiment also in an external magnetic field where the inho-
mogeneities of the corresponding susceptibility are weaker, making the
field homogeneity assumption more plausible. In the LL model the field
contribution to the Hamiltonian for each particle is given by

Ul — —en E(UL £ - é] ; ()

where 7 is proportional to the square of the external field strength and
f is a unit vector in the field direction. Finally, the switching threshold
is sensitive to changes in the surface anchoring strength. Therefore,
here cases with different anchoring strengths will be examined, with a
dimensionless anchoring strength defined as w = ¢4/e. Here ¢, denotes
the nematic-ghost interaction strength and ¢ the nematic-nematic one.

The possible director configurations in a regular fiber array sample
(Fig. 5) are equivalent to those encountered in a simple nematic slab.
Tmagine a slab of thickness d sandwiched between two parallel plates
imposing strong planar anchoring along the z-axis, and let there be an
external field f applied along the slab normal (y-axis). In a weak ex-
ternal field the equilibrium director profile is homogenecous with n L £
(“h-structure”). Increasing the field strength £, at first the director pro-
file does not change, but once the Fréedericksz threshold E% oc ™1 is
reached, a transition to a deformed structure is observed (“d-structure”).
Tor finite anchoring strengths W the I'réedericksz threshold £ is some-
what reduced [20]. Increasing the field strength even further, for fi-
nite W the orienting effect of the field overwhelms the anchoring and a
second, saturation transition takes place. Above this second threshold
By nematic molecules are aligned uniformly along the field, with n||f
(“s-structure”). Note that in case of weak anchoring or in a very thin
nematic slab with K/W > d (K standing for the Frank elastic con-
stant), the thresholds Er and Fj attain similar values, indicating that
the region of stability for the deformed d-structure becomes extremely
narrow [20].

In the MC simulation, the sample size was again set to 30a x 30a x 30a
and the fiber radius to B = 5a. All simulations were performed at
1* = 1.0, deep in the nematic phase. To reliably estimate the field
thresholds for the I'réedericksz and saturation transitions from the MC
simulation, external field strength scans were performed for a given an-
choring strength w by gradually increasing/decreasing the field strength.
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Since orientational fluctuations can increase significantly in the vicinity
of structural transitions, rather long equilibration and production runs
(1.2 x 10 MC cycles each) were necessary to produce reliable results.
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Figure 6. Order parameters (Py) (solid line) and (FPy), (dotted line), plus the
corresponding variances ¢ and ¢¥. Top: strong anchoring (w = 1), bottom: weak
anchoring (w = 0.1). Closed circles correspond to scans upon increasing 7, the open
ones to scans upon decreasing. Fréedericksz and saturation thresholds can be deduced
from the positions of the ¢¥ and ¢¥ peaks, respectively. For w = 0.1 both transitions
virtually overlap.

A suitable order parameter for monitoring the Iréedericksz transi-
tion (involving a significant number of nematic particles) is (PY)
%(3(u4 -y)?—1), where the average {...) is performed over all particles and
MC cycles, and y represents a unit vector along the field direction. If, on
the other hand, the average (...) is taken over particles in the first layer
next to the fiber only (of thickness a), one obtains (P§)s that is sensitive
to the subsurface reorientations characteristic for the saturation transi-
tion. The sudden increase either of (PY) or (Py), is accompanied by
a significant increase of fluctuations of these order parameters. There-
fore, the corresponding variances o¥ and o¥ can be used to accurately
determine the position of the threshold for both transitions.
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For w — 0.1 and w — 1 the behavior of (P§) and (PJ)s upon increasing
field strength, along with their variances, is shown in Fig. 6. Note that
the reproducibility of the data points is good (comparing scans up and
down in field strength) { it is somewhat poorer in the w = 0.1 case
where the surface anchoring is much weaker than for w = 1. The lact
that there is no obvious hysteresis suggests that both the Fréedericksz
and the saturation structural transitions are second-order (hence con-
tinuous), in agreement with phenomenological studies.

The threshold values for both transition types at different values of
anchoring strength are summarized in a structural phase diagram. For
T* = 1.0 and R = 5a it is shown in Fig. 7, together with the equiv-
alent phase diagram for a nematic slab, derived phenomenologically in
Ref. [20]. In weak enough fields one can always find the h-structure,
while in strong enough fields the s-structure is always seen. The d-
structure appears at intermediate field strengths, but its stability region
gets narrower with decreasing w. As shown in Ref. [20] for the case of
a nematic slab, the h-d and d-s coexistence lines do not merge upon
decreasing the anchoring strength and there is no triple point where all
three structures would coexist. Due to finite accuracy of field threshold
estimates, in the present stability analysis the Fréedericksz and satura-
tion transitions below a certain anchoring strength (w ~ 0.1) coalesce
and cannot be distinguished anymore. Note that the qualitative agree-
ment with the phase diagram for the nematic slab [20] is rather good.
Preliminary tests show that the coexistence lines in the diagram are
essentially insensitive to changing T*.

The position of the hi-d coexistence line corresponding to the Fréede-
ricksz transition is expected to depend on the effective fiber-to-fiber dis-
tance d,: with decreasing d, at fixed w and T™* the line is expected to
move towards higher critical field strengths. On the other hand, the
d-s saturation transition line should not shift significantly. To check
these statements, one can explore transitions in a network consisting
of somewhat thinner fibers. Setting R/a = 3 (instead of R/a = 5
above) and considering a 18 x 18 x 18 sample with a single fiber (in-
stead of the 30 x 30 x 30 one) roughly maintains the polymer concen-
tration, but decreases the fiber-to-fiber distance. For Fréedericksz and
saturation thresholds at w = 1 one now finds n}¥ = 0.027 & 0.003 and
nb}g = 0.30 £ 0.03, respectively, where 7 is proportional to the square of
the field strength. The corresponding thresholds for the larger 30 x30x 30
sample are 730 = 0.0085+£0.0015 and 72° = 0.30£0.015. From this data
one can conclude that like in slab geometry (and for strong enough an-
choring) the Fréedericksz threshold field strength scales approximately as
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Figure 7. (a) Structural phase diagram log/n/no vs. log1/w calculated for
T* =1.0 and R/a = 5; no corresponds to the Fréedericksz threshold at the strongest
anchoring considered, w = 5. (b) Phase diagram for a nematic slab (from Ref. [20])
plotted in scales and ranges allowing for a comparison with (a). h denotes field
strength values normalized with respect to the Fréedericksz threshold for infinite an-
choring.

d;1, if d, is taken to be the shortest fiber-to-fiber distance. On the other
hand, the saturation transition threshold remains almost unaltered.

2.2 Irregular fiber array

The actual topography of a polymer network shown in typical SEM
pictures [3, 2] is much more complex than the regular array of straight
and parallel fibers considered so far. In particular, the interfiber dis-
tance distribution is expected to play an important role in the switching
process. Therefore, as a first step towards a more complex network
topography, an irregular array of straight fibers has been studied, in-
creasing the lattice size to 50 x 50 x 50 particles and including 8 straight
and parallel fibers of equal thickness, with R = 3a. The fibers were
oriented along the z-axis, but distributed randomly within the ay-plane.
The polymer concentration and fiber radii were kept unchanged in com-
parison with the previous 18 x 18 x 18 case, yielding the same average
fiber-to-fiber distance. Again, the external field was applied along the
y-axis and the surface anchoring was assumed to be planar (with w = 1)
along the z-axis. The concentration of the polymer (i.e., the percentage
ol ghost particles) was approximately 9%. In the following, the regular
array sample (previous Section) will be referred to as “sample A”, while
the sample with the fiber position irregularity as “sample B”. Moreover,
“sample C” containing distorted fibers will be introduced later in this
Section. Simulation runs involving samples of B and C-type consisted

42

Figure 8. Array of several (8) straight fibers (sample B): PJ(r;) order parameter
map (zy cross section) for different 7). The switching process is initiated approximately
at np = 0.013. The “columns” represent parallel straight polymer fibers. Calculated
for T = 1.0, w =1, and R/a = 3.
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of 8 x 10* equilibration and 6.6 x 10* production cycles, while for the
smaller A-type sample the equilibration run was shortened to 6 x 10%
cycles.

Fig. 8 shows the evolution of the local P§ averaged over MC cycles for
every particle within a given xy-cross section for sample B. For n < 0.012
one has PY(r;) & —0.3 constant and negative, showing that particles are
still aligned along z (recall that at 7* = 1.0 one has S & 0.6) and that the
Fréedericksz threshold has not been reached yet. Reaching, however, n =
0.014, in regions where the fiber density is below average (the interfiber
distance above average), the particles start to reorient along the field
direction and PJ increases, becoming even positive in some areas upon a
further increase in 7. It is important to notice that now the Fréedericksz
threshold is significantly lower than in the regular array case with the
same polymer concentration — sample A. This can be attributed to the
fact that the external field always destabilizes the longest-wavelength
distortion first. Then, unlike in sample A, in the irregular sample B
there is a distribution of effective fiber-to-fiber distances, allowing also
for deformations whose wavelength is larger than the average interfiber
distance. As the field strength is increased even further, the parallel-
to-fiber alignment persists only in the very vicinity of fibers and PY
becomes positive almost everywhere. Finally, for extremely strong fields
the saturation threshold is reached as well, and then all molecules are
aligned along the external field direction. In addition, the strong field
enhances the degree of nematic order [21]. Note that the switching of
the molecular orientation has not occurred in all parts of the sample
simultaneously. Indeed, very strong fields are required to switch the
particle orientation in polymer-rich regions (see Fig. 8, for n < 0.3,
in the left corner). Consequently, the Iréedericksz transition is not as
sudden as in a regular array-system. The saturation transition, on the
other hand, is driven merely by a competition between surface anchoring
and the external field, and is not significantly affected by the positional
irregularity of the network.

The last step in modeling the polymer network topography consisted
of dropping the assumption that the fibers be straight and parallel and
considering a system of distorted fibers instead. Again, the general (av-
crage) fiber direction was taken along the z-axis. Then each of the fibers
(whose thickness was assumed constant along z) was generated by per-
forming a biased random walk resulting in the structure shown in Fig. 9,
“sample C”. Surface anchoring was assumed planar, here, however, along
the local fiber direction (not necessarily matching with the z-direction),
with w = 1. The second-rank order parameter for ghost particles (Fs),
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Figure 9. Array of several distorted fibers (sample C): ghost particles representing
the fixed polymer fiber network; (P), ~ 0.28.

(see Section 1.1) represents a measure of fiber distortion. For sample C
(P2)q ~ 0.28.

The switching process was simulated also for the sample C. It turns
out that despite fiber distortions, in absence of external fields (n = 0) the
net molecular orientation seems to be still well-defined (along the average
fiber direction, z-axis), except for the fiber vicinity where it is affected by
the local anchoring easy axis. Due to network irregularity the external
field and the anchoring easy axis are never strictly perpendicular to each
other, therefore — unlike in Fréedericksz geometry, samples A and B —
the external field torque acts on nematic particles already at arbitrarily
low field strengths. As we shall see later, this results in a decrease of the
field threshold value in comparison to more regular samples A and B,
while the switching itself is relatively sudden. At the same time it should
be kept in mind that the sample C studied here covers length scales up to
0.25 pm (depending on the choice for a; usually 1 nm < g <5 nm), i.e.,
still far below macroscopic dimensions. As a consequence, the detailed
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switching behavior depends sensitively on the specific irregularities of
the network generated for sample C.

2.3 Experimental observables and network
irregularity

For the switching in a symmetry-lacking sample it is instructive to ex-
plore simulation-predicted experimental observables, rather than study
specific order parameter maps. Therefore, this Section will be devoted
to the analysis of selected experimental observables (electric capaci-
tance [3], intensity of transmitted polarized light, and 2H NMR spectra),
along with a comparison of samples A, B, and C. As these methods all
monitor the bulk response of the system, they are suitable for monitoring
the Iréedericksz transition, but are rather insensitive to the saturation
transition.

The electric capacitance measurements rely on the orientational aniso-
tropy of the molecular dielectric constant, leading to changes in sample
capacitance for any major molecular reorientation. Simulating capaci-
tance, it was assumed that the probing electric field is — like the align-
ing external field f — directed strictly along the y-axis throughout the
sample, but is, unlike the external field, not homogeneous. In absence
of free ions and provided, moreover, that molecular ordering is mostly
restricted to the yz-plane and that elastic deformations within the zz-
plane are weak, the effective static capacitance for a M x M x M sample
can be calculated as [3, 12]

M M /M | -1
(«’y*FOZZ(Z m) : )

k=11=1 \m=1

where the indices £, I, and m run along the z, z, and y coordinates,
respectively. Here we consider that each group of molecules represented
by u; and located at (k,1,m) is endowed with a local dielectric constant
elk,l,m) — el + (6” — e )(u; - f)24

The calculations were performed for ¢ — 29.8 and ¢, — 6.1, assuming
as in Ref. [3] the same dielectric anisotropy for the polymer network.
The Cy versus n characteristics for three samples (A, B, and C) with
R/a = 3 and same polymer concentration (= 9%), but different network
topography, is shown in Fig. 10. In Fréedericksz-like geometry where the
external field is strictly perpendicular to fibers (samples A and B), the
orientational transition happens abruptly at a well-defined threshold (74
and 7, respectively, with 74 > np). In sample C network irregularities
further decrease the switching threshold (n¢; not well-defined anymore),
yet keep the reorientational process relatively sudden. The thresholds for
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Figure 10.  External field-induced switching as monitored by capacitance (C'y) mea-
surements: sample A (small dots), sample B (medium dots), and sample C (large
dots).

the three samples can from Fig. 10 be identified as n4 — 0.022 £+ 0.001,
neg — 0.013 £ 0.001, and ne — 0.010 £ 0.002, with ne < ng < na,
as expected. Note that the Cy(n) curve is most gradual for sample B
because molecules in polymer-rich sample regions refuse to switch unless
the field is extremely strong. Further, the increase of Cy for large n
is to be attributed to enhanced nematic order rather than to particle
reorientation.

Another convenient method for the determination of the Fréedericksz
threshold are the measurements of the intensity of polarized light trans-
mitted through the sample [22]. Let again the average fiber direction
coincide with the z-axis and let the external field be applied along the
y-axis, with the light beam also propagating in this direction. In a ne-
matic slab of thickness d with planar anchoring along z (and with no
polymer networks) there is no @ or z-dependence in the director field.
The intensity of light transmitted through such a sample (if put between
two polarizers crossed at a right angle) is given by the formula

I = Insin?(2¢0) sin?(Ad/2), (5)

with Ip denoting the intensity of the incoming polarized light. Iurther,
A® - also called birefringence — is the phase difference between the or-
dinary and extraordinary ray (characterized by refractive indices n, and



47

ne, respectively) accumulated upon passing through the sample. The
output signal is maximized when the angle ¢ between the projection of
the director onto the zz-plane and the incident light polarization plane
is equal to /4. Having fixed g, the output signal I depends only on
the birefringence A® = (2r/)\) [61[716,(3;) —n|dy, i.e., T o sin?(AD/2).
This implies that I is constant below the Fréedericksz threshold, but
shows oscillatory behavior above it. The total number of oscillations
seen upon increasing the field strength is approximated by An®Sd/A,
where An® stands for the maximum difference of indices n. and n, in
a perfectly ordered nematic where S — 1. From such a graph, the
Fréedericksz threshold can be estimated by identifying the point where
the I(n) curve begins to oscillate (as in Ref. [22]).
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Figure 11.  External field-induced switching as monitored by transmitted polarized
light intensity (/) measurements: sample A (small dots), sample B (medium dots),
and sample C (large dots). The arrows indicate switching thresholds as determined
from the capacitance measurement (Fig. 10).

Simulating switching in nematic samples with dispersed polymer net-
works, the incoming light polarization plane was fixed at ¢ = 7/4.
The sample thickness for the optics calculation was set to 10 pum by
allowing for several light passes through the sample before measuring
the transmitted intensity. thin cach “pixel” in the az-plane polarized
light was propagated along the y-axis using the Jones matrix formal-
ism, assuming that the local and instantaneous optical axes are given by
u;. Since the inhomogeneity length scale within the xz-plane is much
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smaller than the light wavelength A, the transmitted intensity (2, z) was
averaged over pixels within the light beam cross section. Both light scat-
tering and diffraction have been neglected [2]. Further, it was assumed
that the polymer network is optically isotropic, with a refractive index
np = 1.499, while for the perfectly ordered nematic the corresponding in-
dices were set to n, = 1.7445 (maximum value) and n, = 1.520. Probing
such a sample with He-Ne laser light with A = 632.8 nm, at 7* = 1.0 with
S & 0.6 the birefringence can be estimated as 27 x 2.1. Consequently,
two oscillations can be anticipated in the I(n)-dependence. Inspecting
the simulated I(n) curves shown in Fig. 11, one immediately recognizes
the oscillatory behavior predicted above. Again, curves for samples A, B,
and C are characterized by different Fréedericksz thresholds, matching
with those observed already in the capacitance measurement. Moreover,
the oscillations of I are slowest [or sample B, which is in agreement with
the lowest slope of the Cy(n) capacitance curve (Fig. 10). At extremely
strong fields no light is transmitted because the birefringence approaches
Z€ero.

Finally, we inspect the 2H NMR spectra calculated to monitor the
switching process. Fig. 12 comparatively shows the spectra calculated
for samples A, B, and C, with the spectrometer field applied along the
(average) fiber direction, z-axis. Again, a smoothening convolution with
a Lorentzian kernel of width ~ 0.07dwg was performed and transla-
tional diffusion was assumed, with the same (fast) diffusion rate as in
Section 1.1. Consider sample A first. In absence of the external field,
as well as for low 7, in the spectrum there are two well-defined lines
positioned approximately at a maximum frequency splitting reduced by
a factor of S & 0.6. This is a signature of fiber-imposed molecular or-
dering along z below the Fréedericksz threshold. Once the threshold at
N4 & 0.022 is reached, molecular orientations start to switch along the
external field direction (perpendicular to the spectrometer field), and
the splitting is reduced. At very high fields already above the satura-
tion transition the quadrupolar splitting should equal half the splitting
observed at zero field, provided that the degree of ordering remains un-
changed. In a strong external field, however, this never is the case and
therefore the splitting keeps on increasing as the field becomes stronger.
Moving to sample B, one can observe that the low-field splitting starts
to decrease already at np = 0.013. Moreover, the switching process is
also more gradual, which is all in agreement the other two experiments.
In sample C at low fields one also finds a double-peaked line shape, yet
at a splitting slightly lower than in the previous two cases. This indi-
cates that despite the network being highly irregular, the z-orientation
of molecules is still maintained in most of the sample, except for the
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Figure 12. External field-induced switching as monitored by H NMR spectra:
sample A (left), sample B (center), and sample C (right). In all cases T — 1 and
w = 1. The spectra of sample A show more noise because this sample contains 5256
particles only — as opposed to 112200 particles in samples B and C.

closest distance from the distorted fibers. Note also that the sample C
switches already at 1o ~ 0.010, which, again, is the lowest threshold of
all. In addition, the switching is more sudden than in sample B.

3. Pretransitional ordering in the isotropic
phase

The last issue considered in this Chapter will be pretransitional or-
dering in a nematic sample with dispersed polymer networks above the
NI transition (T7; = 1.1232). As seen already in studying a regular
fiber array, some surface-induced paranematic ordering may persist in
the vicinity of fibers. This ordering can be detected by optical means [2[;
alternatively, it can be detected also by 2H NMR, [23].

The simulations presented in this Section were all performed with
sample C presented in Section 1.2.3 (see Fig. 9). Again, planar an-
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choring along the local fiber direction was assumed and there was no
external field applied. Paranematic ordering can then be characterized
by a director parallel to the local fiber direction, and by a degree of
order S decaying from a nonzero surface value to S = 0 over £ ~ 5a
(at T* = 1.2), the corresponding correlation length. Therefore, in a
low-polymer-density sample areas with S # 0 are limited only to the
very vicinity of fibers. In high-polymer-density samples, on the other
hand, fibers can approach cach other (or even cross-link) and thereby
create “bridges” of nematic order with S # 0 wherever the lowest fiber-
to-fiber distance becomes comparable to ~ 2¢ — see Iig. 13. This effect
is similar to the capillary condensation observed experimentally in thin
nematic films by force spectroscopy [24], potentially allowing for a self-
assembly of colloidal particles. The actual degree of paranematic order
depends significantly also on temperature (7%) and on the strength of
the orientational coupling of the liquid crystal with the fiber surface (w).
Therefore, in this Section simulation results for different 7" and w will
be presented, focusing on the experimental output: transmitted light
intensity and ?H NMR line shapes. Tn the simulation, the sample was
equilibrated during 8 x 10* MC cycles and, afterwards, 7 x 10* cycles
were used to accumulate the relevant observables.

The set-up of the optical experiment was identical to that used in
Section 1.2.3: net fiber direction along the z-axis, light beam along the
y-axis, and the polarizer and analyzer crossed in the xz-plane, each of
them at an angle of /4 with respect to the z-axis. Further, same sample
thickness and light wavelength were considered. Again, the polymer
was assumed optically isotropic and the refractive indices of the liquid
crystal equal to those used in Section 1.2.3. As already discussed, the
intensity of outcoming light 7 is proportional to sin?(A®/2), where the
effective birefringence A® is proportional to the difference between the
extraordinary (n.) and ordinary (n,) refraction index averaged along the
path of the light beam. Assuming that the net direction of paranematic
ordering — averaged over the whole sample — still coincides with the
z-axis, as imposed by the polymer network, and that 7. — n, is small
in comparison with 7. and n,, A® is simply proportional to the overall
degree of order, in this case given by (FP§). Note that the averaging
performed to calculate A® has to be carried out both over local rapid
fluctuations of molecular long axes (defining the local standard nematic
order parameter S), and across the sample over changes in the local
director and polymer fiber orientations (characterized by the (), order
parameter). Following the addition theorem for spherical harmonics and
performing all averages (neglecting biaxiality), one can approximately




Figure 13.  Pretransitional ordering in sample C at 7" — 1.2, for planar anchoring
with w = 1: S(z,y) order parameter map cross section at z/a = 25. The paranematic
order decays to zero over the correlation length £ ~ 5a, except in polymer-rich areas
where nematic “bridges” can form in between fibers (as here in the left lower corner
with S < 0.2). Note that while the “columns” denoting fiber positions are vertical
(with § = 1), the fibers themselves can be tilted with respect to the zy-plane (Fig. 9).

write (P§5) — (S)(Fa)y, where (S) is the spatial average of S. Hence,
AP x (S) [2].

Fig. 14 shows the simulated transmitted light intensity (I) curves ver-
sus reduced temperature (above 13%; = 1.1232) for different anchoring
strengths w. As expected, the intensity [ is nonzero due to parane-
matic surface-induced ordering, (S) / 0, and decreases with increasing
T*. Curves in Fig. 14 are similar to the corresponding experimental
ones plotted in Ref. [2]. Note, however, that the increase of I/l on
approaching 7%, from above is not as abrupt as in Ref. [2]. This may be
because in the present simulation the NI transition was not approached
as closely as in the experiment. Further, in the present study I/l is
well-behaved also because the effective birefringence is not necessarily
small — the polymer network is rather dense and A® < 1 does not
always hold (e.g., for w = 1) — and any significant variation of A® is
saturated in the T oc sin?(A®/2) dependence. Tor the same reason, the
curve for w = 1 is not monotonous close to the NI transition. With
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Figure 14. Pretransitional ordering: transmitted polarized light intensity I as a

function of 7 for different anchoring strengths: w = 1 (large dots), w = 0.5 (medium
dots), and w = 0.1 (small dots). /o denotes the intensity of the incoming light.

decreasing anchoring strength w the degree of ordering decreases, which
then translates into a lower /1y signal.

Alternatively, pretransitional ordering can be detected also via 2II NMR..
The quadrupolar line splitting depends both on the local orientation of
the nematic director (matching with the local orientation of the fiber
network) and on the local degree of order. The spectra presented in
Tig. 15 were calculated for sample C in the fast diffusion limit (the rate
of diffusion being 1024 diffusive steps per NMR. cycle, as earlier in this
Chapter), with the spectrometer magnetic field directed along the z-
axis. In this case the spectrum consists of one or two well-defined lines
positioned at an average frequency wyz % (wo(r)), where (...) stands for
the spatial average. As above, in case of predominantly uniaxial molec-
ular ordering the spherical harmonics addition theorem can be applied
to the expression for quadrupolar splitting when (wg(r)) is calculated,
resulting in (wo(r)) = dwg(S)(Pa)g-

Fig. 15 shows the evolution of 2H NMR. spectra upon increasing T*
for different values of the anchoring strength w. A convolution of the
spectra with a Lorentzian kernel of width ~ 0.07 dwg was performed in
order to smoothen the spectra. The left sequence of spectra in Fig. 15
is plotted for w = 1 where the surface degree of order is high enough
to yield a double-peaked spectrum. For 7% — 1.2 the peak is estimated
to be located at |wg/dwg| ~ 0.04 &+ 0.01. On the other hand, (S)(F2),
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Figure 15.  Pretransitional ordering: diffusion-averaged 2H NMR spectra as a func-
tion of 7% for different anchoring strengths: w = 0.1 (left), w = 0.5 (center), and
w = 0.1 (right). Double-peaked line shapes are a signature of surface-induced parane-
matic ordering.

gives & 0.036, and hence the agreement of the two estimates is reason-
ably good. When decreasing the temperature towards 1y, the effective
quadrupolar splitting increases, which results from an increase of (S).
For weaker anchoring (w = 0.5 and w = 0.1) the overall (S} is smaller
and the calculated spectra are only single-peaked — except rather close

to T for w = 0.5 — because of their finite resolution.

4. Conclusions

In conclusion, the simulations based on simple Lebwohl-Lasher mod-
eling can reproduce the qualitative behavior of the composite liquid
crystal-polymer network system. The polymer fibrils seem to be able
to align the surrounding liquid crystal despite partial orientational dis-
order at the surface. For homeotropic anchoring conditions on the fiber
surface topological defects in nematic ordering are observed. Further,
the switching performance in an external field depends on the positional
order of the fibers and their distortion: systems of straight and par-
allel fibers with a broad interfiber distance distribution give a gradual
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switching, while in a system of distorted fibers this process is much
more sudden. Finally, above the nematic-isotropic transition temper-
ature paranematic ordering can be observed in the system. All these
conclusions can be drawn by inspecting the simulated experimental ob-
servables.
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