
International Journal of Modern Physics B, Vol. 11, No. 16 (1997) 1937-1944 
@ World Scientific Publishing Company 

PHASE DIAGRAM AND ORIENTATEONAL ORDER 
OF A SYSTEM WITH SECOND AND FOURTH 

RANK INTERACTIONS 

CESARE CHICCOLI, PAOLO PASINI 
INFN Serione dr Bologna, Vra Imerio 46, ~111.26 Bologna, Italy 

CLAUD10 ZANNONI 
Dipartimenlo dz Chimica Fisica ed llsorganica, Untuersitd da Bologna 

h a l e  Riso~ggmenlo 4 ,  40136 Bologna, Italy 

Received 10 December 1996 

A simple generalized Lebwohl-Lasher model for liquid crystals, where a fourth rank inter- 
ac t~on  is added to the usual second rank one, is investigated in detail. We have obtained 
the phase diagram of  the system performing extensive Monte Carlo computer simulations 
for a range of the fourth to the second rank relative strengths and we compare it with 
the  prediction of Mean Field and Two Site Cluster theories. We show that the addition 
of a non-negligible fourth rank term significantly changes the temperature dependence of 
the order parameter. Fourth rank contributions larger than 20% worsen t h e  agreement 
of the model with the typical temperature behavior of t h e  order in nematics. 

1. Introduction 

The Lebwohl-Lasher (LL) model has proven to be a simple yet powerful poten- 
tial for the simulation of the orientationd properties of liquid crystals and of the 
nematic-isotropic (NI) The model potentid assumes the molecnles to 
he represented by "spins" .u, interacting as 

where E ; ,  = c for nearest neighbor particles and 0 otherwise and pl2 is ;t second 
rank Legendre polynomial. The system has an isotropic and an orientationd or- 
dered phase, with the order quantified by the average of the Legendre polynomial 
(Pz(cos 0)) = (! cos2 /3 - $), where /3 is the angle between the axis of a molecule 
and the  symmetry axis of the ordered uniaxial phase, the director. 

A large number of studies has been performed on this model by groups in the 
liquid crystals and, more recently, also by theoretical physicists interested in 
the phase transitions of RPN spin models relevant in elementary particle physics.5g6 
It turns out from these investigations that  the system presents the following features: 



(1) an orientational order-disorder (nematic-isotropic) transition at a reduced tem- 
perature T* = kT/e = 1.1232.~ The transition is a weak first order one. 

(2) The temperature dependence of the order parameter, (P2)(T) is similar to the 
experimental results for nematics. 111 particular an empiricd fitting of {P2) 
(Haller law) gives 

wit11 the exponent B2 w 0.22 similar to that found experimentally, i.e, h = 
0.17 - 0.25, at least for a large wries of Schiff bases and cymobipl~enyls.~ (Pz)igo 
is the isotropic value and {P2)i,, # 0 only for afinite size system, e.g. in computer 
simulation studies. 

(3) The first two moments (cos2 #3), {cog4 B} of the one particle distribution P(cos0) 
or equivalently the dependence of {PA)  versus (P*} are compatible with a simple 
distribution P(eosP) a exp[aP2(cos P)] as found for real liquid crystals.' 

The close agreement with experiment is in many ways surprising. especially since 
non-negligihl~ higher rank contributions are expected for real molecules. Indeed 
one could think of Eq. (1) as the first term in a more general Legendre pofynomial 
expansion of U i j  which should contain higher terms.' 

The question is then how strictly related are the observed experimentd results 
to the specific second rank nature of the potential? Adding odd rank terms changes 
the symmetry so it is expected to have important and quditatively different effects; 
for instance, we have shown elsewhere that adding a PI term can give a ferroelectric 
phase? An even rank term might be expected to have less dramatic effects. How- 
ever, it is interesting to examine the effects of a fourth rank contribution, easily the 
first neglected term, and indeed some preliminary simulation studies of the mixed 
P2P4 interaction potential have appeared. In Ref. 10 a MC study for A' = 10J parti- 
cles with a 20% added fourth interaction term (positive and negative) mTas reported. 
Another simulation has been performed by Mouritsen and coworkers3 for the case 
of a 10% Pq contribution. In Ref. 11 a Mean Field Theory (MFT) of the pure fourth 
rank model, P4, was presented and this was then studied by MC simulations and 
Two Site Cluster (TSC) theory.l2 However to date no study of the phase diagram 
in terms of the fourth rank contribution has appeared. This is somewhat surpris 
ing also because fourth rank contributions have been often invoked in interpreting 
experimental results in n e m a t i c s l b d  in membrane ~esicles. '~ 

In this work we propose to study systematically the effect of the fourth rank 
term examining 8 cases with different P4 contributions and performing a full tem- 
perature scan (typically 30 temperatures) for each of them. The simulation results 
are compared with Mean Field (MF) and Two Site Clusters (TSC) predictions and 
we comment on the limitations of these methods. We shall also consider how the 
fourth rank term affects the temperature dependence of the order parameters. 
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2. The Model and the Simulations 

The system studied consists of a numher of spins, If, placed at the sites of a cubic 
lattice. As rncntioncd above the potential. rr-hich is nearest neighbors, is formed by 
two parts, tlre usl~al LL second rank P2 and tlie fonrth rank contribution Pd. Thus 
the Hamiltonian appears as: 

Er;, = -E;~ [P~(u; . a j )  + 64P4(21, . u3)] ; with i # j , 13) 

where C4 designates the relative strength of the interactions. A three dimensional 
representation of the potential as a function of I?,, and C d  is shown in Fig. 1. 

cos p 
Fig. 1. A plot of the f iP4 potential between two spins as a function of their relative orientation 
cosp = ui .aj for various fourth rank contributions C4. 

The simulations have been performed using a spherical sample carved from a 
cubic l a t t i c ~  so rrq to minimize the effects due to  the surface. This has been made 
possible by the use of the Cluster Monte Carlo Method (CMC) with a self consistent 
outside environment described in Ref. 15 instead of employing periodic replicas 
(PBC). The CMC boundary conditions are obtained considering an additional layer 
of particles which have, on average, the same ordering as that inside the droplet. The 
orientations of thew ghost particles are generated by sampling from a distribution 
built, using information theory. from a knourledge of the order inside the sample. A 
detailed description of the procedure is reported in our previous  paper^.^^'^*'^ 

The CMC method, apart from the possibility of using arbitrary sample shapes,16 
has the advantage of allowing a better determination of the phase transition 
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in comparison with PBC systems of the same size. This is particularly important in 
cases, like the present one, where the potential depends on an additional parameter 
whose effect has t o  be studied and a large number of independent simulations have 
to 'be performed to determine a phase diagram. 

In the present case we have used the largest droplet contained in a L x L x L 
cubic lattice of edge L = 16. Thus our system is constituted by N = 1472 spins and 
we have run simulations a t  typically 30 different temperatures for each case. Our 
experience on the simple Lebwohl-Lasher model indicates that CMC simulations of 
this size call give estimates of TNI to a t  least 1% of the  true value. 

We calculate energy, second and fourth order parameters and correlation func- 
tions, that are not shown here for remons of space since they do not add significantly 
to the other results. 

Mean Field and Two Site Cluster Theory calculations have also been performed 
using the same Strieb, Callen and H o r w i t ~ ' ~  methodoloo described before in Refs. 9 
and 12. 

3. Results and Discussion 

In Fig. 2 we show the  set of curves of specific heat, obtained differentiating the 
energy with respect to temperature for the various values ofC4 studied. We see that 
the fourth rank term has a profound effect on the transition. A positive contribution 
shifts T;, at higher temperature (see Table 1) and makes the transition much more 
pronounceilly first order, while a negative C4 has the apposite effect, weakening the 

Fig. 2. Heat capacity C; G C \ r / k  dependence on reduced temperature T* kTJc for various 
values of C4. Tlle lines are a guide for the eye. 
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Table 1. A summary of the cases investigated. For each value of C'd we report the values of the 
maximum of heat capacity from the energy derivative (C*I , )~ ,  the temperatures at which they 
occur and the transition latent heat AU* (see text). The exponent 62 and are also 
reported. Errors are estimated to be f 1%. 

transition and shifting it to a lower temperature. We have estimated the latent heat 
of transition AU3 = AU/kT by integrating the simulated C; curve and subtracting, 
as background a flat curve which ha9 the correct low and high temperature values. 
Notice that  while the reported AU* are very useful to compare the effect of Cq, 
their absolute value will depend on sample size and that the size dependence will 
in turn be affected by the character of the transition. 

This behavior can be qualitatively understood looking at the changes brought 
on the potential Uij by C4. When C4 > 0 the negative wells near 0 = 0, a becomes 
narrower and sharper while C4 < 0 eliminates the well at the origin in favour of 
tilted minima. 

Notice that  this applies to potentids where the second and fourth rank contri- 
butions me comparable. For a pure Pq potential we have shown elsewhere12 that 
the transition is at bT/f  = 0.645 while being strongly first order. Looking at the 
Cq > 1 limit of Eq. (2) we see that when the  P2 term becomes negligible we reduce 
to a scaled pure P4 potentid with a slope kT/(cC4) = 0.645. 

In Fig. 3 we see the phase diagram IT&, Cq) obtained from simulations MF 
and TSC. We notice that MF becomes very seriously incorrect for Cq < 0 where 
the transition becomes more second order. The overestimation of the transition 
temperature, typical of MF, goes from z 8% for C4 = 030 to  e 60% when Cq = -1. 
TSC is always significantly better than MF. Indeed for Cq > 0 the  TSC and MF 
curves are very similar, even if the agreement is less impressive for Cq < 0. FOT large 
positive Cs, we see that the transition curve becomes indeed a straight line with 
slope 0.645 as discussed before. We now turn to discussing the order parameters. 
We see, a5 already indicated by the specific heat that the transition becomes sharper 
for C4 > 0 with the order at  the transition being much larger. Since {P2) always 
starts at very low temperatures (T -+ 0) from the same value (P2) = 1 we expect 
the temperature variation of (Pz) to be different in the various cases. This is 
indeed the case as we see in Fig. 4 where all the curves are plotted in reduced 
temperature T f  = T*/TGI. The temperature dependence d ISz) and {P4) can be 
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Fig. 3. Phase diagram showing the reduced transition temperature TsI "BUS C4 as obtained 
from MC simulation. The Mean Field (MF) and Two Site Cluster (TSC) predictions are also 
reported. 

Fig. 4 .  The second rank order parameter (&) dependence on maled temperature T+ 1 TM/T;, for 
the various cases. The continuous curves denote the region limited by the experimental exponents 
/3 in the Haller law as obtained for real liquid crystals. 
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well-approximated by a formula. like equation (2) giving respectively the & and 
p4 values reported in Table 1. The type of plot makes the comparison with real 
experimental data possible and thus we also report as continuous lines the so-called 
Haller curves for B2 = 0.17 and 0.25, i-e. for the typical range found for a large 
number of nematic compounds.' It is easy to see that the simple. Cq = 0, LL 
potential is right in the middle of the region and that while small positive values of 
C4 (say C4 5 0.2) are still within the experimental higher values or values of the 
opposite sign would give a temperature dependence of (P2}  in serious disagreement 
with experiments. 

The (P2) ,  (P4) order pararnpters obtained from the simulations are shown in 
Fig. 5. 1Ve notice that ,  even if both (P2) and {P4) can he experimentally obtained 
on real liquid crystals, measurements of (P4) are rather scarce and that experimental 
P4 are not availabe a t  the moment. 

Fig. 5 .  The fourth rank order parameter (Pd versus (Pd for the various caws. The dotted lines 
are a guide to the eye. The case of a pure Pd model is also reported (results from Ref. 12). 

4. Conclusions 

The addition of a fourth rank Legendre polynomial term to the simple LL potentid 
gives significant variations in the absolute value of the order-disorder transition 
temperature and changes its first order character making it more or less pronounced 
according to the sign of Cq. The temperature variation of (P2} is also changed and 
the agreement with typical experimental trends7 becomes poorer as a significant. 
fourth rank contribution is added. 
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