Downloaded from rspa.royalsocietypublishing.org on January 10, 2013

Proc. R. Soc. Lond. A. 343, 389-398 (1975)

Printed in Great Britain

A theory of dielectric relaxation in anisotropic systems

By G. R. LuckHURST AND C. ZANNONI
Department of Chemistry, The University, Southampton, SO9 5BNH

(Communicated by A. Carrington, F.R.S. — Received 10 Oclober 1974)

There is no complete theory of dielectric relaxation for liquid crystals,
in particular, or for anisotropic polar dielectrics, in general. Here we
develop a relation between the complex frequency-dependent permittivity
tensor and the autocorrelation matrix for the net permanent dipole
moment of an ellipsoidal cavity within the dielectric. The relevant equa-
tions are derived for both non-polarizable and polarizable molecules. The
choice of the cavity geometry and simple reductions of the macroscopic
autocorrelation matrix to that for a single particle are discussed.

1. INTRODUCTION

The characteristic behaviour of liquid crystals and other anisotropic systems is
governed by the strong orientation-dependent forces between the constituent
molecules. As a consequence of these forces the molecules in a liquid crystal meso-
phase tend to lie with their long axes parallel to a particular direction, called the
director. The reorientational process in such a system therefore differs from that
in an isotropic medium by the presence of torques which favour molecular aline-
ment parallel to the director. One of the most direct methods for investigating the
consequences of an orientation-dependent torque is dielectric relaxation and
several studies of nematogens have been reported (Maier & Meier 1961 @, b; Axmann
1966; Weiss & Axmann 1966; Rondelez, Diguet & Durand 1971). The complex
permittivity is found to exhibit a single dispersion at high frequencies in the iso-
tropic phase of the nematogen. However, the permittivity for the nematic meso-
phase contains a low-frequency dispersion in addition to a dispersion at frequencies
comparable to that for the isotropic phase. The high-frequency absorption is
associated with rotation about the molecular long axis and this motion is essentially
unaffected by the transition from the isotropic to the nematic phase. In contrast,
the rotation of the long axis is severely hindered by the orienting torques in the
nematic phase and this produces the shift of the absorption to lower frequencies.
However, although the origin of the two dispersions is qualitatively understood
there is no precise relation between the frequency-dependent complex permittivity
and the autocorrelation function of the net dipole moment of the system. One of the
earliest attempts to interpret dielectric relaxation in liquid crystals was based on an
extension of the Debye model for isotropic media to an anisotropic system (Meier &
Saupe 1966). This theory contained & number of simplifying assumptions which
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have since been removed (Martin, Meier & Saupe 1971) but the new theory is still
subject to all of the failings of the Debye analysis. In addition it is limited to the
diffusion model for molecular reorientation and it is difficult to incorporate other
models of rotational motion. The theory proposed by Nordio, Rigatti & Segre
(1973 @) does not suffer from this limitation, instead it is open to criticism because
the relation between the complex permittivity and the dipole moment autocorrela-
tion function, obtained by Glarum (1960), is simply assumed to apply for an aniso-
tropic liquid erystal.

The absence of any complete theory of dielectric relaxation in anisotropic systems
is not too surprising when viewed against the plethora of theories developed for
isotropic media. However, the situation for such systems was considerably clarified
by Glarum (1960) and Cole (1965), who have applied the Kubo formalism to the prob-
lem. The details of this treatment have been criticized and new relations between
the complex permittivity and the net dipole moment autocorrelation function
proposed (Fatuzzo & Mason 1967; Scaife 1967). Both calculations were then ex-
tended to include polarizable molecules (Klug, Kranbuehl & Vaughan 1969; Hill
1972). Glarum (1972) has since attempted to justify his original result and has been
supported in this by Cole (1973). More recently Titulaer & Deutch (1974) have
discussed the problem for nonpolarizable molecules by using linear response theory
and have justified this approach by more detailed arguments based on the fluctua-
tion-dissipation theorem. Their analysis is particularly transparent and shows
that the Fatuzzo-Mason result is correct while that obtained by Glarum describes
a different system.

In this paper we shall employ the linear-response formalism, as prescribed by
Titulaer & Deutch, to derive a relation between the frequency-dependent per-
mittivity tensor of a polar anisotropic system and the autocorrelation matrix for the
net dipole moment of a small region embedded in the dielectric material. In the
following section we shall restrict our attention to non-polarizable molecules while
in §3 we attempt to allow for the molecular polarizability. The difficult task of
relating the macroscopic to the molecular autocorrelation functions is discussed in
§4 and the two simplest relations described. Finally we would emphasize that
although the relations obtained in this paper were intended for liquid crystalline
systems they should be generally applicable to anisotropic systems.

2. NON-POLARIZABLE MOLECULES

The system which we shall consider is sketched in figure 1. It is composed of an
ellipsoidal cavity surrounded by an infinite dielectric continuum; we shall return
to the choice of this geometry in the final section. The permittivity of the material
inside and outside the cavity is anisotropic and the principal axes of both permit-
tivity tensors are parallel to the major axes of the ellipsoid. To be quite general the
complex permittivity ¢® of the material inside the cavity is taken to be different
from that &é® of the surrounding continuum. Finally, in defining the system we shall
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ignore ferroelectric and piezoelectric effects and, for the moment, the polarizabili-
ties of the constituent molecules. We now wish to derive a relation between the
frequency-dependent permittivity of the system and the fluctuations in the in-
stantaneous dipole moment of the cavity m(¢). This calculation is, as we have noted,
a relatively straightforward extension of the treatments for isotropic systems based
on the linear response theory and we shall follow closely the formalism employed
by Titulaer & Deutch (1974). The philosophy of these calculations is to obtain, and
then equate, two expressions for the ensemble average of the net dipole moment for
the cavity {(m(f))go» when a time-dependent electric field Ex®(¢) is applied to the
system. One expression is derived with the aid of linear response theory while the
other follows from a standard electrostatic calculation of the polarization P(¢).

€"w)

Ficure 1. The anisotropic system comprises an ellipsoidal cavity with a complex permittivity
tensor ¢®(w) surrounded by an infinite polar dielectric with a complex permittivity
tensor e(w).

We start with linear response theory which gives the net dipole at a time # as
(mlt)ygn =~ (WD) [ 7 b ¢) B, (1)
0

where the angular brackets, with an £* subscript, denote an ensemble average in
the presence of the applied field. E¢is the electricfield which would exist in the cavity
in the absence of any interaction with the permanent electric dipoles—that is,
inside the empty cavity; more detailed calculations based on the fluctuation-
dissipation theorem would appear to justify the use of this field (Titulaer & Deutch
1974). The autocorrelation matrix @(¢) is defined in terms of the instantaneous
electric dipole moment of the cavity as

D(t) = (m(0) m()), (2)
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where the brackets without the subscript denote an ensemble average in the absence
of the applied field. The autocorrelation matrix is symmetric because the dynamic
process responsible for the fluctuations in m is taken to be stationary and micro-
scopically symmetric under time reversal. The electric field inside the empty cavity
is related to the oscillating field E=(¢) applied at large distances from the cavity by

Ec(t) = T°(w)- E*(t), 3)
where the field E»(t) = E®eiet, (4)

The tensor T° is diagonal within the principal coordinate system «,y, z of the per-
mittivity tensors and, for the remainder of the paper, we shall find it convenient to
work in this coordinate system. The principal components of T°(w) are evaluated
in the appendix and found to be
£V(w)
(8] =
To00) = o) = o) @) 1) ?
where n(w) is the depolarization or shape tensor which is defined in the appendix.

Accordingly 1 .
(M) = g {=B()} To- E(0), (6)

where .% denotes the Laplace transform
L{—d(t')} = f — (') e—iot dt’. (7)
0

This calculation is only valid when the associated wavelength of the osciilating
electric field is large compared with the cavity dimensions. In practise this condition

is easily satisfied in all dielectric studies of polar liquid crystals.
The polarization within an ellipsoidal cavity is uniform and so the induced dipole

moment calculated from electrostatics is simply
(mt)yp- = VP(), (8)

where V is the volume of the cavity. The polarization vector is related to the
permittivity of the material and the electric field E(¢) inside the cavity by

P(t) = Z%{s(z)(w) — 1} E(). (9)

The relation between E(f) and the applied electric field is analogous to that given in
equation (3);in fact, E(t) = T(w)- E=(2), (10)
where, as we show in the appendix,

T(w)

_ £V(w)
= &0(0) —n(w) - {gN(w) — D)} (11)

Consequently the induced dipole moment is

{mlt)y o = {T—E{s@)(w) — 1} T(w)- E=(t). (12)
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Since the equality of the two equations for (m(t))z~ must be satisfied for any
applied electric field E®(f) then

L L)) = 1 (#9(0)~ 1} T(w) To(w) (13)

Since the right hand side of equation (13) is diagonal within the principal coordinate
system shared by (), T°(w) and T(w) then the time derivative of the auto-
correlation matrix and hence the matrix itself must be diagonal within the same
coordinate system because @(t) contains no time-independent terms. That is the
fluctuations in the components of the electric dipole moment m along different
principal axes are uncorrelated. The volume of the cavity appears as an arbitrary
factor in equation (13) but it can be removed in the following way. We first take the
limit of equation (13) as the frequency of the applied field tends to zero; this gives

1
kT
where @D(0) = {m(0) m(0)), (15)

(0) = - (6(0) ~ 13- T(0)- T(0), (14)

and £(0) denotes the appropriate static permittivity tensor. On eliminating the
volume from equation (13) we find
{e®(w) — 1} T(w)- TO(w)™t
L) = =1 T T
where @Y(t') is the normalized autocorrelation matrix defined by
DN(') = @(t')- P(0). (17)
It should, however, be remembered that this procedure does not eliminate the
dependence on the shape of the cavity because the T tensors are partly determined
by n(w) which, in turn, is a function of the relative dimensions of the ellipsoid.
Substituting explicit expressions for the tensors T and T° gives the following rela-

tion between the diagonal elements of the permittivity tensors and the autocorrela-
tion matrix:

(16)

ZL{— DY)}
ER(0) — 1] [68(0) — 710(0) {elw) — 1}] [e“) 0) {e(0 —e;%z I
= [e®(0) 1] [eﬂ)() T 0>{e‘“ 1}] 0w <w){e“’ @y Y

with analogous expressions for the other dlagonal elements. ThlS is the desired
result; it does, of course, reduce to that obtained by Titulaer & Deutch (1974) for
the corresponding isotropic system when the permittivity tensors tend to scalars
and the cavity becomes spherical.

We shall now consider three particular cases of this general result. In a single
component system the permittivities of the material inside and outside the cavity
will be identical; then equation (18) reduces to

@ AN (\1 l(ea:x(w) - 1} [exz(w) - nmc(w) {emc(w) . 1}] exac(o)
A PO} = L O T s 0) a0 lora )~ el )
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for a system with permittivity &(w). This result is the anisotropic analogue of the
Fatuzzo-Mason equation derived for a spherical cavity in an isotropic medium.
We may also obtain the anisotropic equivalent of the Glarum equation, for isotropic
systems, simply by setting the permittivity of the infinite continuum equal to the
static permittivity £(0) of the material inside the cavity (Glarum 1960), We then find

from equation (18)
; — 1}6,,(0)
2. @Z\; P\ = {eam;(w) L , 20

{ i ( )} {eacx(o) - 1} [exx(o) - nxw{emx(o) - me(w)}] ( )
where the depolarization tensor n is now frequency independent. Finally we may
obtain a Debye-like equation by removing the material from the surrounding con-
tinuum and setting éM(w) equal to 1; this gives
— {exz(w) - 1} [1 - ”mm{l _ 613;(0)}] (21>

{exw(o) - 1} [1 - na:w{l - eccx(w)}J

However, we would emphasize that the only result with any relevance for dielec-
tric studies of real anisotropic systems would appear to be equation (19). In the
following section we shall see how this result might be modified to allow for the

polarizability of real molecules.

L{— DY)}

3. POLARIZABLE MOLECULES

In principle, the material filling the ellipsoidal cavity should be composed of
polarizable molecules each with a permanent electric dipole moment. However,
in the calculation we shall find it convenient to adopt Frohlich’s model for this
material and therefore represent it as a continuous medium with a frequency-
independent permittivity &®(co) containing point dipoles embedded in it (Béttcher
1973). The permittivity ¢®(co) is to be identified with the limiting high frequency
permittivity of the material. We shall now calculate the contribution {m#())peo
made by these point dipoles to the net dipole moment of the cavity induced by the
applied electric field. According to linear response theory this contribution is given
by equation (1) provided E¢(f) is equated with the Frohlich field —that is, the field
inside the cavity when it is filled with the continuous dielectric of permittivity
£%(co). This field is related to the applied electric field E*(t) by

Ee() = T=(w)- (1), (22)
o £0(w)
whero T = e = n(0) @) o) =

The autocorrelation matrix is unchanged and is determined solely by the fluctua-
tions in the instantaneous dipole moment caused by the reorientation of the point
dipoles. The ensemble average {m/(f))y« is therefore given by equation (6) but
with T°(w) replaced by T=(w). This average dipole moment may also be calculated
from equation (8) provided we know that part of the polarization Po.(f) which
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originates from the point dipoles. We shall identify this contribution as the differ-
ence between the total polarization, given in equation (9), and the induced polariza-
tion caused by the continuum with permittivity £®(co) in the cavity:

1
; = —{e® —1-
Pyo(t) = - {2¥(00) ~ 1} E). (24)
This gives Po(t) = 4-—1—n{e<2)(a)) —&®(c0)}+ E(t), (25)
where the electric field in the cavity is obtained from equation (10) and so
(MO = 1 {89(w) ~ £2(c0)} Tlo) - E=(1). (26)

When this is identified with the same contribution calculated from linear response
theory we find

'I;To%” {—d(t)} = ZV;{E‘Z)(CU) —&®(c0)} T(w) T*(w), (27)

and removal of the cavity volume by means of the procedure adopted in §2 gives

[62(w) — e®(0)]- T(w) - T Hw)

L=} = )=o) T(0) T=X(0)

(28)

When the material inside and outside the cavity have the same permittivity &(w)
then its elements are related to those of the normalized autocorrelation matrix by,
for example,
. - —_ - 0)
BZ) _@N t/ — [exx(w) ezz(oo)] [exac(a)) nwz(w) {exx(w) exz(oo)}] emc( : 29
P2l = [ (0) a0 [eaa(0)— o0 (0 (o) — Gl @) )

This is our final result, which attempts to allow for the molecular polarizability;
it should be compared with the relation given in equation (19). In essence this result
is the anisotropic analogue of the equation obtained by Klug ef al. (1969) for a
spherical cavity in an isotropic system.

It is also possible to see what assumptions are implied by Nordio, Rigatti &
Segre’s use of the Glarum-Cole equation

{&(w) — &(00)} 3£(0)
) — &(00)}{2¢(0) + &(w)}’

for the components of the permittivity tensor in their dielectric studies of nematic
liquid crystals (Nordio, Rigatti & Segre 1973a,b). This result may be obtained
from equation (28) but only by making the unrealistic assumption that the per-
mittivity tensor for the material surrounding the cavity is frequency independent
and equal to the static tensor &(0). In addition, it is necessary to set the components
of the depolarization tensor equal to ¥ which is incompatible with an anisotropic
permittivity and implies a spherical cavity.

L{~ BNt} = = (30)
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4, MOLECULAR AUTOCORRELATION FUNCTIONS

When the equations developed in §§2 and 3 are applied to nematic or smectic
A liquid crystals there will be some simplification of the relations because of the
D ;, symmetry exhibited by these mesophases. There are in fact just two equations
for the components of the complex permittivity parallel and perpendicular to the
director. However, even when the complete frequency dependence of the permit-
tivity has been measured it is still not possible to determine the autocorrelation
matrix, by taking the Fourier transform, because the depolarization tensor depends
on the relative dimensions of the sample cavity which are arbitrary. This dependence
on the geometry of the sample is an unsatisfactory feature of the analysis but one
which also occurs for isotropic media (Bordewijk 1973; Deutch 1973). However, it
doesnot present a major problem when the cavity contains many molecules for then
its shape is immaterial and it is expedient to choose a spherical sample since the
depolarization tensor n(w) is independent of its size. Consequently the relationship
between the permittivity tensor and the autocorrelation matrix for the net dipole
moment of the spherical cavity is completely defined. However, we are now faced
with the alternative problem of relating this macroscopic autocorrelation matrix to
that for a single particle. In general, the molecular and macroscopic correlation

matrices are related by

PN(i) = {; HO(0) p(t)) +i§j (u(0) ﬂ‘”(t)>}/{§<ﬂ“)(0) #0)) + EJ,(ﬂ“’ (0) #9(0)},
(31)

where u® is the permanent dipole moment of the sth molecule. We can see that the
reduction of @V(¢) to a single particle correlation matrix is prevented by the second
molecular correlation matrix in equation (31), which describes the correlation
between dipole moments on different molecules. The same difficulty is encountered
for isotropic fluids, and a number of solutions, varying in complexity, have been
proposed; the simplest, by far, is to ignore the correlation between dipole moments
on different molecules for then the net dipole moment autocorrelation function is
equal to that for a single particle. Despite the extensive pairwise angular correla-
tion which must exist for anisotropic systems the degree of dipole correlation should
not be any greater than that in the corresponding isotropic phase, provided, of
course, the system is neither piezoelectric or ferroelectric. We may therefore adopt
the same model and so can ignore the cross correlation matrix in equation (31):

DN(t) = {u(0) pu(0)>/<m(0) 1(0)); (32)

in other words, @V(t) may be equated with the single particle autocorrelation matrix.

An alternative approach is to shrink the cavity until it is of molecular dimensions
and contains a single dipole. Although we are now forced to assume that all of the
macroscopic relationships used in the previous derivations also hold for this mole-
cular cavity. Given this assumption the autocorrelation matrix @V(t) is identical to
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the molecular dipole moment autocorrelation matrix but we must decide on the
shape of the cavity. It would appear reasonable that the geometry of the cavity
should reflect the symmetry of the macroscopic system and this notion has moti-
vated our choice of an ellipsoidal cavity. Accordingly a spherical cavity would seem
to be the natural shape for an isotropic dielectric and, as we have seen, such a choice
removes all unknown factors from the calculation. This is not the case for an ellip-
soidal cavity for the relative magnitudes of the semi-axes are still required in the
depolarization tensor and their choice is somewhat arbitrary. One possible solution
is to assume that the semi-axes are proportional to the probability of finding the
molecule parallel to the appropriate axis. Thus for a uniaxial liquid crystal the
major axis of the ellipsoid would be parallel to the director and its length would be
proportional to the probability of finding the molecular long axis parallel to the
director. Similarly the minor semi-axis would be proportional to the probability of
finding the molecular long axis perpendicular to the director. Alternatively the
relative dimensions of the cavity might be taken to reflect the anisotropy in the
spatial pair distribution function for the mesophase (Dunmur 1971).

We are grateful to the University of Southampton for the award of a Research
Studentship to C. Zannoni.

APPENDIX

Here we wish to derive an expression relating the electric field E¢ inside a dielectric
ellipsoid immersed in an infinite dielectric to the applied field E®. The permittivity
&® of the material inside the ellipsoidal cavity, like that of its surroundings &®,
is anisotropic and the two permittivity tensors have the same principal axes which
are also parallel to the principal directions of the ellipsoid. The potential ¢® inside
the cavity must satisfy Laplace’s equation

(e s+ s+ o2 ] 92 = 0, (A1)

where the 2, y, z axes are parallel to the principal axes of the permittivity tensors
and the origin is at the centre of the ellipsoid. The potential ¢® outside the ellipsoid
is given by the analogous equation

02 02
{esz R T o e }¢<” = 0. (A2)
The two potentials must satisfy certain continuity conditions at the boundary of the
ellipsoid which has semi-axes @, b and c. We now scale the variables according to the

following rules. = ()2’
y = /() } (A3)
and z = \/(6‘1’) 2.
With these new variables equation (A 2) for the potential outside the cavityreducesto
0 o2
e VA —
{ax'z Tt az'z} p =0, (A4
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which is equivalent to that for a vacuum. The equation for the potential ¢ becomes
2 92 (2) 92 (2) g2
oz O | Gy © | € O N ym A5
{e% ©x'2+6§,2 oy'? el 02" b ’ (A5)

while the semi-axes of the ellipsoid are changed to a/y/(e$}), b[y/(e5y) and cfy/(€2).

The problem has therefore been reduced to one involving an ellipsoid with an aniso-
tropic permittivity tensor £®/¢V embedded in an infinite vacuum. The electric field
inside the cavity resulting from an applied field has been calculated for such a system

with the result Ee = T-E», (A6)

where, for example,
)

L Cez - (A7)

A 2)\ ?
v Egcag - ww(egvlzg - 65001):)

there are analogous equations for the other two principal axes (Landau & Lifshitz
1960). The components of the depolarization tensor n are related to the semi-axes
of the ellipsoid; for example, the principal component in the z-direction is

abe © ds
Maz = 3 J(e® el eD) J' ST a2 B’ (A8)
where B2 = (S+0a?fef) (S +b/ef)) (S +c?ely). (A9)

Reverting to the original coordinates leaves this result unchanged and so the field
inside the ellipsoid is given by equation (A 6).
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