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Abstract. Monte Carlo simulations of spin models for liquid crystal bulk
systems are described. A concise description of second rank Lebwohl-Lasher
models of various dimensionality and of models containing in addition in-
teractions of first and fourth rank is provided. Biaxial lattice models are
also briefly discussed.

1. Introduction

Lattice spin models consist of systems of interacting centres (“spins”) placed
at the sites of a certain regular lattice. The spins can be thought of as ide-
alized unit vectors assuming discrete or continuously varying orientations
in a space of given “spin dimensionality” s . The lattice of positions will
have its own, possibly different, dimensionality d. Classical examples are
the Ising and Heisenberg models [1] that have played and still play a key
role in the study of magnetism. Indeed, despite their simplicity, spin models
have proved to be extremely important in the study of phase transitions
and critical phenomena in many fields of physics ranging from liquids to
polymers [1, 3, 2]. Although lattice systems with their intrinsic positional
order are in some sense the very antithesis of liquid crystals, they have also
been succesfully employed in investigating nematics since the pioneering
work of Lebwohl and Lasher (LL) [4]. In this case the spins that represent
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the molecules or groups of molecules should possess full rotational free-
dom, rather than a discrete set of orientations, so as not to affect the long
range orientational behavior. A large amount of work has been and is cur-
rently done on generalizations of the LL hamiltonian even though in the
last few years more realistic potentials with full translational freedom, like
the Gay-Berne one [5], have become increasingly popular thanks also to
the continuous increase in computing power. It is, in any case, fair to say
that as long as the properties of interest are purely orientational, there are
several advantages in using simple lattice models, with respect to potentials
with translational freedom, the foremost of which is probably the possibil-
ity of performing simulations on a larger (often 102 − 103 times larger!)
number of particles while conserving the essence of the physics. As an al-
ternative, when using smaller lattices, it is possible to investigate potentials
for relatively complicated systems depending on additional parameters, for
example associated with varying boundary conditions and field strengths,
over a wide range of state points.

Here we wish to present and briefly review some lattice models of bulk
liquid crystals and their computer simulations to show how these simple
potentials can be useful in investigating the orientational properties of ne-
matics.

2. Periodic boundary conditions

Before going into the details of the various models we wish to mention
the ubiquitous problem of the choice of boundary conditions, i.e. of what
to surround the simulated sample with. Tackling it is unavoidable since
computer simulations are usually performed on a relatively limited number
of particles N . Even for lattice models N is of the order of 103 − 106 in
comparison with a bulk system for which the interacting particles are of
the order of the Avogadro number. Then, apart from choosing a lattice
size as large as possible, it is very important to adopt some artifact at the
sample surfaces so as to minimize the effects of the finite size of the system.
The appropriate choice of the boundary conditions becomes then essential
especially when small systems are investigated.

The most often used boundary conditions are the so called periodic ones
(PBC), where the sample box is surrounded by exact replicas of itself (see
Fig. 1). Although this kind of boundary conditions introduces a non exis-
tent periodicity and thus some spurious correlation, PBC effectively reduce
the effect of the finite size and of the sample surfaces. Due to the greater
correlation between sites it is expected that periodic boundary conditions
will overestimate the transition temperature TC . The opposite case arises
when the correlation between sites is underestimated as in the case of free
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Figure 1. A schematic representation of boundary conditions in a 2D lattice system:
empty or free (left), periodic (middle) and cluster (right).

Figure 2. The LL lattice model in the nematic phase.

boundary surfaces. Consequentely periodic and free boundaries should give,
respectively, an upper and a lower bound for the transition temperature:

TC(free) < TC < TC(periodic), (1)

and this has been checked at least for 2d lattices [6]. In any case PBC
represent the standard approach to simulating bulk phases and we shall
adopt it here, although we shall see later that other and sometimes more
effective approaches can also be employed.

3. The Lebwohl-Lasher model

The prototype lattice model for modelling liquid crystals was devised many
years ago by Lebwohl and Lasher (LL) [4] and is the simplest one with the
correct symmetry for nematics (in particular the potential is invariant for
an head-tail flip of the molecules). The particles, assumed to have uniaxial
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symmetry and represented by three dimensional spins located at the sites
of a L× L× L cubic lattice (see Fig. 2), interact through a pair potential
of the form:

Uij = −εijP2(cosβij), (2)

where εij is a positive constant, ε, for nearest neighbour spins i and j and
zero otherwise, P2 is the second Legendre polynomial and βij is the angle
between the molecules. The interaction tends to bring molecules parallel
to one another and effectively models whatever underlying intermolecular
interaction either attractive or repulsive that does that. The model has been
studied [7, 8, 9, 10, 11, 12] and generalized by many authors [14, 15, 13, 16]
and we shall see later a few relevant examples.

3.1. OBSERVABLES

While Monte Carlo computer simulations of LC lattice models typically
proceed following the standard Metropolis [17] procedure (see Chapter 1)
two issues require special attention and will be covered here starting with
the LL model: one is the determination of phase transitions and the other
the calculation of orientational order and other anisotropic observables.

3.1.1. Energy and heat capacity
The phase transition of the model is located by monitoring as a function
of temperature the constant volume specific heat defined as:

C∗
V = ∂U∗/∂T ∗, (3)

and obtained by a numerical differentiation of energy with respect to tem-
perature [7]. We use the star for dimensionless variables, e.g. T ∗ = kT/ε
with k the Boltzmann constant.

This is a only seemingly simple task since numerical differentiation typ-
ically requires smoothing and this in turn masks the transition. Indeed at
times the derivative is best calculated solving an integral equation! [18] The
specific heat can also be calculated from the energy fluctuations:

C∗
V /k = (〈U∗2〉 − 〈U∗〉2)/(kT ∗)2, (4)

although this tends to be somewhat noisy.
The dimensionless energy per particle of a system with N spins, U∗ =

〈U〉/Nε, is in turn calculated by the sum:

U∗ =
1

N(N − 1)ε

N∑
i=1

N∑
j=i+1

Uij . (5)
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Figure 3. The single particle energy U∗ (left) and heat capacity C∗
V (right)vs dimen-

sionless temperature T ∗ = kT/ε for the Monte Carlo simulation of a 10 × 10 × 10 (full
circles) and a 30× 30× 30 (empty circles) [9] Lebwohl-Lasher systems.

Figure 4. The second rank order parameter 〈P2〉 vs dimensionless temperature
T ∗ = kT/ε as obtained from MC simulations on a 10 × 10 × 10 (full circles) and a
30× 30× 30 (empty circles) [9] LL systems.

For the LL system the values range then from U∗ = −3 for a perfectly
aligned system to U∗ = 0 for an isotropic phase.

First order transitions are characterized by a singularity in the heat
capacity in the thermodynamic limit. In a finite system, however, the tran-
sition region is broadened and the heat capacity just peaks at a phase
transition. Then C∗

V is used in locating the phase transition tempera-
ture T ∗

c . For the LL model T ∗
NI was determined [9] in this way to be

T ∗
NI = 1.1232 ± 0.0006. Furthermore the maximum of the peak increases

with the system size [19, 20, 22]:

Cmax
V (L) = a+ bL3, (6)

where a and b are size independent parameters.
The energy and the heat capacity variation with temperature as ob-

tained from Monte Carlo simulations on two lattices with different sizes
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with PBC can be seen in Figure 3. The peaks sharpens with the increase
of L and actually scales as expected from (6). The first order character
of the transition is confirmed also by an analysis of the distribution of en-
ergy values collected, as histograms, during the simulation runs, that shows
the double peak behaviour expected for coexisting ordered and disordered
states [21]. A more modern analysis [46] based on Ferrenberg and Swendsen
[23] reweighting method confirms the results of [9].

3.1.2. Order parameters
The second rank orientational order parameter can be defined as :

〈P2〉 = 1
N

N∑
i=1

P2(ui · n), (7)

where ui is the molecular axis of the i-th particle and n the director. How-
ever, in these Monte Carlo simulations there is no external field applied to
pin the director and n can change during the system evolution. A descrip-
tion of the determination of the order parameters in computer simulations is
reported in Chapter 2 of this book. Here we recall only that the problem of
determining the order parameter reduces to that of finding the unit vector
n which renders the order in a certain configuration 〈P2〉S a maximum and
this in turn amounts to calculating and diagonalizing the ordering matrix
Q defined as:

Q =
1

2N

N∑
i=1

3uiαuiβ − 1
2
δαβ , (8)

with uiα the direction cosines of the i-th molecule, and identifying the order
in the S configuration 〈P2〉S with its largest eigenvalue [7]. The eigenval-
ues of a matrix are scalars, independent on an overall frame rotation and
thus on the orientation of the instantaneous director n with respect to the
laboratory frame. Then a global average, 〈P2〉λ, can be obtained by first
calculating the order parameter by diagonalization of Q at each desired
configuration and then averaging over a sufficiently large number of con-
figurations. A related procedure has been given for 〈P4〉λ in ref. [9]. The
second rank order parameters obtained in this way from the simulations
of two LL lattice systems are shown in Figure 4. As mentioned before the
LL model reproduces rather well the temperature dependence of the order
parameter versus temperature observed in real nematics, that can normally
be written as:

〈P2〉 = (1− T/TNI)β + 〈P2〉iso T < TNI . (9)
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Figure 5. The second rank orientational correlation function G2 vs distance r as obtained
from MC simulations on a 10× 10× 10 LL systems. The results are for T ∗ = 1.0 (upper
curve), T ∗ = 1.1 (middle curve) and T ∗ = 1.2 (bottom curve),

In fact it has been found that the exponent ranges approximately from
0.17 up to 0.25 for a large series of both Schiff base and cyanobiphenyl
nematics [24, 25] while the LL model gives 0.22 ± 0.01 [16]. In real ex-
periments 〈P2〉iso = 0 while for the finite samples used in simulations
〈P2〉iso ≈ O(

√
N).

This behavior can be obtained also using small lattices (a few thou-
sand spins) and possibly the model works so well because a “spin” can be
thought to represent, rather than a single particle, a closely packed group
of molecules, that maintains its local structure at various temperatures and
even across the nematic/isotropic phase transition [26]. As a special case
these domains could comprise just one molecule but it seems more realistic
to assume that they typically include a few tens of particles [27].

3.1.3. Orientational correlation functions

While 〈P2〉 and the higher 〈PL〉 offer a description of the orientational long
range order in the case it exists, the problem of deciding if true long range
order does indeed exist remains to be tackled and orientational correlation
functions GL(r) are particularly useful to this effect. The set of correlations
GL(r) can be defined as expansion coefficients of the rotationally invariant
pair distribution [7]:

G(r, β12) = G00
0 (r)

∑
L

2L+ 1
64π2

GL(r)PL(cosβ12). (10)
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G00
0 (r) is the particle centre distribution that, for a cubic lattice, is just:

G00
0 (r) =

1
4πρr2

∑
k

zkδ(r − rk), (11)

where ρ is the density and zk the number of neighbours at rk. Thus GL(r)
are a sort of two particle order parameters , which give the correlation
between the orientations of two particles separated by a distance r:

GL(r) = 〈PL(cosβ12)〉r, (12)

where 〈.....〉r is a normalized average over all spins falling in a thin spherical
shell centred at r and of width corresponding to the chosen resolution ∆.

The pair coefficients GL(r) should start from one and tail off to es-
sentially 〈PL〉2 [7]. Thus we expect GL(r) to decay to a plateau only if
long range order exists, as in the nematic phase. As we can gather from
the above formulas the calculation runs on particle pairs and can be quite
time consuming when the size of the lattice is large, representing a relevant
percentage of the total time spent in the simulation. Usually the first two
angular pair correlation coefficients G2 and G4 are calculated.

In fig. 5 we show G2(r) at some selected temperature below and above
the phase transition for the LL model.

3.2. LOW DIMENSIONAL SYSTEMS

Low dimensional systems present interesting and challenging problems such
as the very existence and nature of their phase transitions and have received
a lot of interest from many authors [28, 29, 30, 31, 32, 33, 34]. We notice
that the planar LL model is of interest also from a purely theoretical point
of view to test the existence of topological phase transitions in non-abelian
two dimensional systems [35, 36].

We here consider systems with reduced space dimensionality: d = 2 and
d = 1, while keeping s = 3, in other words a planar and a linear LL lattice
where molecules can still reorient in three dimensions.

Looking at the heat capacity behavior of the d = 2 lattice as a function
of size it is clear from the simulation results that the scenario is very dif-
ferent in comparison with the 3D system and that in particular the heat
capacity is insensitive to the increase in the number of particles as can be
seen in Fig. 6 where the results for four increasing sizes are shown.

Although no true phase transition is expected in a two dimensional LL
system [37] the heat capacity anomaly divides the temperature range in
two regions which shows a different behavior in the decay of orientational
pair correlation function (Fig. 7 left). The analysis of these quantities [30]
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Figure 6. The heat capacity C∗
V obtained from differentiation of energy plotted versus

dimensionless temperature T ∗ = kT/ε for the Monte Carlo simulations of four size planar
Lebwohl-Lasher systems, i.e. 10× 10 (top left), 20× 20 (top right), 60× 60 (bottom left)
and 80× 80 (bottom right).

indicates that a power law decay of the type:

G2(r) = Ap/r
kp (13)

is the best fit for the simulation data in the ordered phase while an expo-
nential decay:

G2(r) = (1−Ae)e−ker +Ae (14)

describes the correlation function behavior above the pseudo-transition
temperature. Thus the planar system can present large ordered domains
for T ∗ < T ∗

c but not for T ∗ > T ∗
c .

To conclude this short overview of space dimensionality effects it is
interesting to look now at a one dimensional, d = 1, s = 3 lattice. This
1D system is constituted by a chain of particles which are free to rotate in
a 3D space. An analytical solution for this model, given by Vuillermot and
Romerio [38], exists and shows that no phase transition occurs and that the
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Figure 7. The second rank orientational correlation function G2 versus distance r
(lattice units) at two selected temperatures, i.e. below (a) and above (b) the heat capacity
anomaly. Left: G2 for the planar LL model. Right: G2 for the monodimensional case for
L = 40 (squares) and L = 100 (circles) compared with the analytic solution [38] (lines).

system is ordered only at zero temperature (see Fig. 8). It is instructive

Figure 8. The second rank order parameter 〈P2〉 vs dimensionless temperature
T ∗ = kT/ε for a 1D LL system of various lengths: L=10 (squares), L=40 (empty circles),
L=100 (triangles), L=1000 (full circles).

to see that 〈P2〉 can be quite misleading as an indicator of the existence of
true long range order, especially if a size dependent study is not performed
(Fig. 8). On the contrary a fit of G2(r) reveals very clearly the exponential
decay of orientational correlations [31] (Fig. 7 right).

In summary we see that the different behavior of G2(r) can help in
assessing the presence and particularly the absence of long range order.
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3.3. CLUSTER BOUNDARY CONDITIONS

Although quite satisfactory when far from a phase transition, the use of
periodic boundary conditions (PBC) leads to large smearing and broaden-
ing of the heat capacity and order parameter vs. temperature curves. This
complicates the location of the transition and demands the use of very large
samples. There is therefore an interest in looking for alternative schemes
and, for instance, another type of boundary condition was proposed within
the Cluster Monte Carlo (CMC) method [39]. In this approach the simula-
tion sample is surrounded by an additional layer of particles (ghosts) which
have on average the same properties as the particles inside. In the CMC
method, the desired bulk or global average of a quantity A is written as
an average over all the external “world” configurations [W ] of the values
< A >[W ] calculated for a fixed configuration of the “world” outside the
sample box [39]. Thus the global average is

< A >G =<< A >[W ]>W (15)

≈ (1/MW )
∑

[W ]

< A >[W ] . (16)

In practice a MC simulation is run to obtain < A >[W ] and the out-
side world configurations needed are obtained by creating a layer of ghost
particles outside the sample box having the same one-particle distribution
of the system inside the box. The orientations of the virtual neighbours
are sampled from an orientational distribution function constructed, us-
ing maximum entropy principles,[40] from the order parameters calculated
inside the sample, i.e.

P (cosβ) = exp[
L′∑

L=0

aLPL(cosβ)], (17)

where the coefficients aL are determined from the constraint that the avail-
able < PL > can be reobtained by averaging PL(x) over the distribution.
For example <P2> and <P4> have been used for the LL model, and the
coefficients a2, a4 have been determined by solving the non linear system

<PL>=
∫ π
0 dβ sinβPL(cosβ) exp[a2P2(cosβ) + a4P4(cosβ)]∫ π

0 dβ sinβ exp[a2P2(cosβ) + a4P4(cosβ)]
, L = 2, 4

(18)
During the simulation the order parameters <P2 >, <P4 > inside the

sample are calculated and a2 and a4 are determined. The orientations for
the ghost particles outside the box are then sampled from the distribution
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Figure 9. The various shape systems with similar volume, i.e., from top to bottom:
10× 10× 10, 5× 5× 40, 3× 3× 110 and 2× 2× 250.

in Eq. 18, the energy of the system is then recalculated and evolution pro-
ceeds. In the subsequent cycles the order parameters with respect to the
Z laboratory direction P J

L for the spins inside the box are still calculated.
After a certain number of cycles M an average is calculated for this K tra-
jectory segment together with the attendant standard deviation σK . These
< P2 >in and < P4 >in parameters are then compared to the ones out-
side and if the difference is statistically significant a new set of orientations
for the ghost molecules is generated using the new order parameters. The
other parts of the Monte Carlo simulation method and particularly lattice
updates proceed as usual. A more detailed description of the method is
given in [39].

The method, that avoids the spurious correlations between particles
separated by more than half the box size, has been successfully tested for
various lattice models [39, 13, 41, 42] where it has given results comparable
with those obtained employing PBC on lattices up to 2d times larger in
d dimensional systems. The CMC boundaries are particularly useful when
potentials with one or more additional parameters have to be studied and
a set of independent simulations has to be performed to obtain a phase
diagram [13] as we shall show later on.

3.4. SAMPLE SHAPE

Another possibly significant advantage in using non-periodic CMC bound-
aries is the complete freedom over the shape of the sample that it allows
us to simulate, for example, spherical samples [42, 16] and that different
shapes with similar N can be used without affecting the results. Since com-
puter simulations are numerical experiments performed on finite and rather
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small systems with the aim of reproducing the bulk it is to be hoped that
the simulations should not depend very significantly on the sample size
and shape: indeed these are accessories to the calculation not relevant in
a truly bulk sample. Ideally the choice of the boundary conditions should
ensure that the size and the shape employed do not affect the behavior of
the system under study. On the other hand employing Periodic Boundary
Conditions in non cubic systems may give results very different from a bulk
behavior [43], as we can see from the results of simulations performed on LL
systems of very different shapes [43] (see Fig. 9), containing approximately
the same number of spins (Figs.10 and 11) We see that changing the shape
of the sample the results show a pronounced variation for PBC but not for
CMC. Upon decreasing the breadth and width of the sample while keeping
the volume constant, the system tends to approach, using PBC, the limit
of one dimensional model (cf. Fig. 9). Also the second rank order param-
eter results confirm that PBC tends to induce a one dimensional behavior
increasing the length to breadth ratio of the sample and, in this latter case
〈P2〉 (see Fig. 11 left plate) can be compared with the 1D simulation data
(Fig. 8).

Figure 10. The heat capacity CV versus dimensionless temperature T ∗ = kT/ε as
obtained from PBC (left) and CMC (right) simulations of LL systems with different
shapes, i.e. 2× 2× 250 (squares), 3× 3× 110 (empty circles), 5× 5× 40 (triangles) and
10× 10× 10 (full circles).

4. Some other nematic lattice spin models

The simplicity of lattice models allows to study in detail potentials depend-
ing on more than one relevant parameter. In these cases the simulation has
to be repeated for various values of these physical parameters and the
determination of transition temperatures and transition behavior implies a
challenging exercise in computer simulations [2, 1, 39]. The choice of bound-
ary conditions like the CMC ones is of considerable importance because a
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Figure 11. The second rank order parameter 〈P2〉 vs. dimensionless temperature
T ∗ = kT/ε as obtained from PBC (left) and CMC (right) simulations of LL systems
with different shapes. System sizes and symbols are as in Fig. 9.

large number of simulations can be performed using smaller lattices in order
to obtain a phase diagram for the model. Here we consider two examples
involving generalizations of the LL model.

4.1. A P2P4 MODEL

As mentioned above the temperature dependence of the orientational order
for the LL model is in quite a good agreement with the esperimental results
for nematics. However, it is interesting to examine the effects of a fourth
rank contribution, easily the first neglected term in a general expansion
of the pair interaction and examine how strictly the observed experimen-
tal results are related to the specific second rank nature of the potential.
A fourth rank contribution has often been invoked in interpreting exper-
imental results in nematics [44] and in membrane vesicles [45] and some
simulation studies of the mixed P2P4 interaction potential have been per-
formed [14, 16, 46].

The P2P4 hamiltonian can be written as:

Uij = −εij [P2(ui · uj) + C4P4(ui · uj)] ; with i 	= j, (19)

where C4 designates the relative strength of the interactions. A three di-
mensional representation of the potential as a function of βij and C4 (Fig.
12) shows how the location of the potential minima changes with the fourth
rank contribution. The MC simulation results for the specific heat for var-
ious values of C4 are reported in Fig. 13. We see that the fourth rank term
has a profound effect on the transition. A positive contribution shifts T ∗

NI to
higher temperature and makes the transition much more pronouncedly first
order, while a negative C4 has the opposite effect, weakening the transition
and shifting it to a lower temperature.
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Figure 12. A plot of the P2P4 potential between two spins as a function of their relative
orientation cosβ = ui · uj for various fourth rank contributions C4.
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Figure 13. Heat capacity C∗
V ≡ CV /k dependence on reduced temperature T ∗ ≡ kT/ε

for various values of C4 as obtained from MC simulation on an approximate spherical
lattice with Cluster boundary conditions. The lines are a guide for the eye.

The order parameter versus reduced temperature curve (Fig. 14) shows
that a fourth rank contribution can vary the effective exponent β in eq. 9
and that only a limited range of C4 can yield a β value compatible with
experiment.

4.2. A P1P2 MODEL

Another interesting mixed rank potential contains a simple combination
of first and second rank interactions proposed by Krieger and James [47]
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Figure 14. The second rank order parameter <P2 > dependence on scaled temperature
T+ ≡ T ∗/T ∗

NI for various values of C4. The continuous curves denote the region limited
by the experimental exponents β in the Haller law as obtained for real liquid crystals.

and later by Lin Lei [48]. The first rank term simulates the head - tail
asymmetry and the potential can be viewed as a prototype model for bowlic
and ferroelectric liquid crystals. The hamiltonian reads:

Uij = −εij [P2(cosβij) + ξP1(cosβij)], (20)

where the parameter ξ determines the relative importance of the first rank
term (Heisenberg model) with respect to the second one (Lebwohl-Lasher
model), while its sign determines ferroelectric or antiferroelectric type inter-
actions. Realization of a molecular system with ferroelectric type ordering
is actively seeked and could be made possible by a combination of steric
and dipolar interactions as, e.g., in pyramidic systems [49, 50].

The simulations [13] confirm the Mean Field predictions [47] about the
phase diagram, shown in Fig. 15, with three phases: polar, nematic and
isotropic. In the polar phase (P) both the first and the second rank order
parameters, <P1 > and <P2 > respectively, are non zero. In the nematic
region (N) <P1> is zero while, as usual, <P2> survives and both of them
vanish in the isotropic phase (I). The tricritical point occurs at a value of
ξ = 0.3578.

4.3. A BIAXIAL MODEL

In all the lattice models presented above, as in the large majority of theoret-
ical calculations and computer simulations of liquid crystals, the mesogenic
molecules are assumed to be cylindrically symmetric. However it is im-
portant to recall that nematogen molecules are invariably not cylindrically
symmetric and that a much more realistic approximation is to treat them at
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Figure 15. The P1P2 model phase diagram showing the reduced transition temperature
versus the relative strength parameter ξ. The simulations results (points) are reported
together with the Two Site Cluster predictions (curves).

Figure 16. The heat capacity C∗
V versus temperature for two different molecular biax-

ialities, i.e. λ = 0.2 (left) and λ ≈ 1/
√
6 (right). The results are from the simulations

(dots) and MF Theory (lines).

least as biaxial objects. Ordered phases formed by biaxial particles have in-
deed been studied using a number of theoretical methods: Mean Field The-
ory (MFT) [51, 52, 53, 54, 55], counting methods [56], Landau-deGennes
theory [57], bifurcation analysis [58, 59]. Both attractive interactions and
hard particle models have been investigated. It should be stressed that typ-
ical nematic phases have uniaxial symmetry around the preferred direction,
the director, even if the constituent molecules are themselves biaxial. How-
ever, the possibility of a biaxial nematic mesophase has been predicted by
all these studies. The existence of this phase has also been confirmed by
Monte Carlo simulations of a lattice system of biaxial particles [15, 60] and
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of a fluid system of biaxial spherocylinders [61]. A simple lattice model of
a biaxial system is described by the second rank attractive pair potential:

U(ωij) = −εij{P2(cosβij) + 2λ[R2
02(ωij) +R2

20(ωij)] + 4λ2R2
22(ωij)}, (21)

where λ is the biaxiality parameter that accounts for the deviation from
cylindrical molecular symmetry: when λ is zero, the biaxial potential re-
duces to the Lebwohl - Lasher P2 potential, while for λ different from zero
the particles tend to align not only their major axis, but also their short
axis. ω ≡ (α, β, γ) is the set of Euler angles specifying the orientation of a
molecule. The potential depends on the relative orientation ωij of the molec-
ular pair, RL

mn are combinations of Wigner functions symmetry - adapted
for the D2h group of the two particles:

R2
00 = 3

2 cos2 β − 1
2 (22)

R2
20 = 1

2

√
3
2 sin2 β cos 2α (23)

R2
02 = 1

2

√
3
2 sin2 β cos 2γ (24)

R2
22 = 1

4

(
cos2 β + 1

)
cos 2α cos 2γ − 1

2 cosβ sin 2α. (25)

The model has been studied on a fcc lattice by Luckhurst and Romano
for λ = 0.2 [15] and on a cubic lattice for a fairly large set of biaxialities
by Chiccoli et al. [62]. The largest value for λ, λ = 1√

6
, separates the

region of distorted rods from that of distorted disks that can be mapped
into one another [52]. This means that for λ > 1√

6
, that is for discotic

molecules, one can change the y and z axes of the molecules and use the
potential with the corresponding λ′ < 1√

6
and ε′. In other words for λ > 1√

6

there is a mapping of the system to another system with λ < 1√
6
, and all

the thermodynamic results should be the same (of course the temperature
T = kT/ε will correspond to T ′ = kT/ε′).

The simulations has proved very useful in investigating the thermody-
namics of this biaxial model and improving the Mean Field Theory predic-
tion. At low values of biaxiality two transitions occur as clearly visible from
the two peaks in the heat capacity curve (see Fig. 16), peaks which coalesce
approaching the λ = 1√

6
, self dual, case. The phase diagram, obtained from

a set of MC simulations at various molecular biaxiality is shown in Fig.
17 together with the MFT prediction. The lower transition lines identify
the biaxial - nematic phase transition and have a second order character.
The upper curve denotes the nematic isotropic phase transition: it is first
order for low values of the molecular biaxiality and becomes more second
order approaching the dual point. This uniaxial-isotropic transition high-
lights some differencies between MC and MFT. In fact, while the MFT
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Figure 17. The biaxial model phase diagram showing the reduced transition temper-
ature versus molecular biaxiality λ. The points are simulation results while the contin-
uous curves are the mean field predictions. The tricritical point corresponds to a value
λ = 1/

√
6 ) [60].

curve increases with λ the MC results are nearly constant or even show an
opposite behavior. This could be relevant in understanding the difficulties
in observing a true thermotropic nematic which would be competing in real
systems with potential smectic or crystal phases. If, as observed in [63] the
typical range of a nematic is of the order of 10% from TNI then the MC
phase diagram shows that the biaxial region (B) accessible to experiments
is reduced further at lower temperatures and at higher values of λ with
respect to the MFT expectations.

The simulations have also been used to calculate the biaxial order pa-
rameters. A method to obtain the order parameters is described in Chap-
ter 2 of the present book where a full set of this second rank quantities
is also presented. The availability of these biaxial data has allowed other
researchers to calculate elastic constants for the model [64].

5. Conclusions

Computer simulations of lattice spin models for liquid crystals have been
around for many years but still offer interesting opportunities for investi-
gating anisotropic materials. Their simplicity allows to easily modify the
models by adding terms that try to keep into account various effects such as
contributions of different rank and symmetry. In particular they are useful
in studying phase transitions, transition temperatures and collective prop-
erties to a precision not too lower than experiment something that requires
in turn very large simulation sample sizes. They have also revealed useful
in studying relatively small lattices under a variety of different conditions
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to investigate confined nematic liquid crystals as we shall see in the next
Chapter.
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