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We report the results of atomistic molecular dynamics simulations of 4-n-octyl-4′ cyanobiphenyl
(8CB) on samples of 750 and 3000 molecules showing the spontaneous formation of the nematic
phase and then of smectic layers by gradually cooling down from the isotropic phase. Orientational,
positional, and mixed order parameters, layer spacing, translational diffusion tensor components
and their temperature dependence are reported. A detailed comparison with available experimen-
tal data validates the model and force field employed and clarifies the molecular organization of
this important liquid crystal often used as reference smectic material. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4804270]

I. INTRODUCTION

Atomistic simulations have recently started to offer a
view with an unprecedent level of detail on the molecular
organization and dynamics of condensed matter, and of liq-
uid crystals (LC) in particular, allowing us to inspect for
the first time the role of specific molecular features such
as internal flexibility and charge distributions on the phase
behavior.1–6

Compared with generic models, such as the Gay-Berne
one,7, 8 where each mesogen molecule is replaced by a sin-
gle rigid object, the atomistic level of description grants
access to the chemical details needed to predict or at
least interpret the results of X-ray diffraction, nuclear mag-
netic resonance (NMR), and other real experiments. For in-
stance, several papers published in the last few years have
proved that “in silico” nematics such as cinnamates1 and
cyanobiphenyls5, 9, 10 can reproduce a large number of ex-
perimental results such as transition temperatures, density,
order parameters, NMR dipolar couplings, and can help
to interpret the origin of phenomena like the odd-even ef-
fect, i.e., the alternation in nematic-isotropic (NI) transition
temperatures determined by the variation of the number of
aliphatic carbon atoms in the homologue series of these LC
compounds.

It is also worth pointing out that atomistic simulations
have a significant predictive role: for example, simulated val-
ues of the fourth rank orientational order parameter 〈P4〉
obtained for 4-n-pentyl-4′-cyanobiphenyl were at variance
with experimental ones available at the time of publication,11

which were obtained from depolarized Raman scattering, but
have more recently proved to be in good agreement with those
obtained using an improved version of the same technique.12

It should also be pointed out that it is quite common to find
a relatively large scattering among measurements of struc-
tural and dynamic data published by different groups, even

a)Electronic mail: Claudio.Zannoni@unibo.it

when the same characterization technique is nominally used,
and that simulations can thus represent also a useful com-
plement to experiment. In another context the advantages of
combining experiments and predictive simulations have also
been recently shown for NMR studies of solutes dissolved in
nematics.13, 14

While the quality of observable results obtained from
molecular dynamics (MD) is approaching that of real
experiments for nematics, much less is known on the pos-
sibility of reliably reproducing smectic molecular organiza-
tions and properties. From this point of view, 4-n-octyl-4′-
cyanobiphenyl (8CB) is an ideal test bench system since it
has been the subject of numerous experimental investigations
and of one of the first atomistic studies a few years ago.15

Even though such early simulations were started assuming
molecules already placed in layers and their trajectories were
followed for a time of a few nanoseconds, shorter than the ex-
pected rotational relaxation time for a molecule of the size
of 8CB, more recently several groups have reported simu-
lation results for the 8CB bulk phase.16–19 McDonald and
Hanna,16 employing a united atom (UA) level of modeling,
where CH, CH2, and CH3 groups are considered as suit-
ably parameterized spherical interaction sites, successfully
obtained a smectic phase from the isotropic even if, proba-
bly because of the choice of neglecting electrostatic interac-
tions, they did not reproduce the transition temperatures (e.g.,
they obtained TNI > 400 K) as well as the dimerization of
8CB molecules and thus the layer spacing observed through
X-ray measurements.20–22 De Gaetani and Prampolini,17 em-
ploying a mixed UA – all atoms model, found the sponta-
neous onset of a partial bilayer smectic phase in a temper-
ature range compatible with the experimental one, although
the layer spacing was still rather far from the one obtained by
X-ray measurements20–22 and the limited number of simula-
tions did not allow to precisely assess the transition temper-
atures. The simulation of cyanobiphenyls, particularly 5CB
and 8CB has also been tackled by Zhang et al.,18 with good
estimated results for the transition temperatures, using a Force
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Field (FF) obtained modifying the TraPPE-UA set23 so as to
reproduce the bulk density for 5CB within 2%.

Another recent work by Chami et al.24 reported the sim-
ulation of Electron Paramagnetic Resonance (EPR) spectra
of a cholestane nitroxide spin probe dissolved in 8CB start-
ing from all atom MD simulations (thus explicitly including
the hydrogens using AMBER parameters). While the simu-
lated EPR spectra closely resemble the experimental ones,
the transition temperatures (TNI ≈ 375 K, TSN ≈ 340–360 K)
are still far from the experimental values (Texp

NI ≈ 313.8 K,
Texp

SN ≈ 306.5 K).25 Moreover, even though the onset of a par-
tial bilayer smectic phase was observed both visually and
from the calculation of the radial distribution function paral-
lel to the director, g||(r), no estimation of the positional order
parameter was reported.24

Here, we take advantage of the united atoms force field
we have recently developed and validated for the nematic
phase of cyanobiphenyls10 to investigate in detail 8CB in
its nematic and smectic phases. One of the significant is-
sues we plan to examine is the type and extent of antiparal-
lel arrangement for these molecules with a strong terminal
dipole,26 comparing with X-ray data. Another is the deter-
mination of positional and, for the first time, of the mixed
positional-orientational order parameters, testing to what ex-
tent the two types of ordering can be considered independent
as sometimes assumed in theoretical mean field models.27 The
third is to look at translational dynamics, and in particular
to the diffusion coefficients for movements inside the lay-
ers and across, examining to what extent the UA approxi-
mation can affect a successful comparison with experimental
studies.

II. METHODS AND COMPUTATIONAL DETAILS

We have run two series of simulations, the first one on
systems with a number of molecules N = 750 at several tem-
peratures, and the second one on a much larger system with N
= 3000 to obtain a more in depth assessment of the positional
order of the smectic phase and to study its dependence on the
system size.

The 8CB molecules were modelled at UA level of de-
tail using a AMBER-OPLS force field,28, 29 which was previ-
ously tuned in house to reproduce the experimental nematic-
isotropic transition temperature of n-alkyl cyanobiphenyls
with 5 to 8 carbon atoms in the linear alkyl chain10

but that was not explicitly optimized for the smectic
phase.

For the first series of simulations, we followed a pre-
viously established procedure:6, 10, 30 we started from a tem-
perature at which the sample is isotropic and then we
progressively cooled it at lower temperatures, allowing to
observe, if present, its spontaneous organization. Simulations
were run in NPT conditions using NAMD31 with multiple
step integration: bonded, van der Waals, and electrostatic in-
teractions were calculated every 2, 4, and 8 fs, respectively.
The samples were kept at the constant pressure of 1 atm
using a Berendsen barostat,32 while the temperature, which
ranged from 300 to 320 K, was kept constant through velocity
rescaling.

To validate the computational assessment of the posi-
tional order, we have also run a second series of simulations
and investigated three different N = 3000 molecules systems.
One is a bulk sample at 300 K obtained by merging two previ-
ously equilibrated free standing 8CB thin films and removing
the vacuum, obtaining a sample containing approximately 10
layers. This system was then brought to 310 K in order to in-
vestigate the gradual disappearance of the smectic order. We
also studied a system obtained by merging 4 replicas of an
isotropic system from the previous series of simulations and
cooling it down to 300 K. The samples were kept at the con-
stant pressure of 1 atm using a Langevin piston, allowing us
to run simulations with the x and y axes of the cell kept at a
constant ratio, thus maintaining a square section of the cell.
Three-dimensional periodic boundary conditions were used
in both two series of simulations and long range electrostatic
interactions were computed through the Particle Mesh Ewald
method.33

The average simulation runtime for each sample was
about 150 ns long, a time much larger than the expected ro-
tational and translational correlation decay times. It is worth
noting that for N = 750 molecules samples at temperatures
close to a phase transition, we prolonged the production time
up to 400 ns, as far as we know, the longest ever used in MD
liquid crystal studies.

III. RESULTS AND DISCUSSION

The liquid crystalline phase diagram of 8CB presents a
nematic and a smectic mesophase in a very narrow tempera-
ture range (about 7 K), thus making its reproduction by means
of MD simulations a challenging task. More specifically, the
experimental smectic-nematic and nematic-isotropic transi-
tion temperatures (TSmN and TNI), which will be represented
as vertical dashed lines in Figs. 1, 2, and 10, are located at
306.6 and 313.6 K respectively, thus a precision of about 1 K
on the simulated results is required.
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FIG. 1. Comparison between experimental34 and simulated density as a
function of temperature. �ρ% is the percent deviation of the simulated density
from the experimental value. Vertical dashed lines represent the experimental
transition temperatures TSmN and TNI.



204901-3 Palermo et al. J. Chem. Phys. 138, 204901 (2013)

0.0

0.2

0.4

0.6

0.8

 300  304  308  312  316  320

<
P

L>

T (K)

SmAd N I

P2 exp (a)
P2 exp (b)
P2 exp (c)
P2 exp (d)
P2 sim
 
P4 exp (e)
P4 exp (f)
P4 sim

FIG. 2. Orientational order parameters 〈P2〉 and 〈P4〉 of the simulated sam-
ple compared to different sets of experimental data as a function of tem-
perature. Data from refractive index measurements in Refs. 37–39 (a)–(c)
and from polarized Raman spectroscopy measurements in Refs. 11 and 40
(d)–(f).

A. Density

A preliminary validation of our results for the N = 750
system can be found comparing density values obtained
by our simulations with the experimental ones available in
literature34 (Fig. 1).

The simulated density decreases with increasing temper-
ature, reproducing precisely the experimental trend, like al-
ready shown in Ref. 10 for smaller samples composed of 250
molecules. Still in Fig. 1, it can be noticed that the most accu-
rate results are obtained in proximity of the experimental TNI,
with a deviation from the experiment not greater than 0.1%.
Moving away from the transition region, this discrepancy
increases to 1%, though these results still qualify as fairly
accurate.

B. Characterization of molecular organizations

The system we wish to describe has nematic and smec-
tic A phases and thus its molecules can possess both orienta-
tional and positional orders. If we approximate the molecules
as uniaxial objects with orientation axis û (which is of course
strictly not true, but reasonable in describing such com-
plex mesogens with a minimal model) and we assume the
liquid crystal to be cylindrically symmetric around a di-
rector z, then we can expand the probability distribution
of finding a molecule at a certain position z and orienta-
tion β, cos β ≡ û · ẑ, i.e., P(z, cos β) in an orthogonal ba-
sis of Legendre polynomials PL and of Fourier harmonics
cos qnz, qn ≡ 2πn/d, with d a layer spacing, as35, 36

P (z, cos β)=
∞∑

L=0
n=0

2L+1

2d
(1+δL0δn0)pL;nPL(cos β) cos(qnz),

(1)
L even,

with the normalization∫ d

0

∫ 1

−1
P (z, cos β) dz d cos β = 1. (2)

The positional-orientational order parameters pL; n are de-
fined from the expansion coefficients of P(z, cos β) as

pL;n = 〈PL(cos β) cos(qnz)〉 (3)

and special cases are the orientational and positional order pa-
rameters: 〈PL(cos β)〉, 〈cos (qnz)〉. In particular, the isotropic-
nematic thermotropic phase transition can be identified ob-
serving the variation with temperature of the averaged second
Legendre polynomial 〈P2〉.

An additional way of characterizing the molecular orga-
nization of a fluid material is through pair distributions. The
simplest is the radial distribution function g0(r):

g0(r) = 1

4πr2ρN

〈δ(r − rij )〉ij , (4)

where ρN ≡ N/V is the number density of the sample, rij

is the vector connecting the chosen reference centers of the i
and j molecules.

For anisotropic systems it is also important to introduce
the set of probability distributions of finding two molecules i,
j at a certain distance and relative orientation from each other,
GL(r), defined as

Gu
L(r) = 〈δ(r − rij )PL(ûi · ûj )〉ij /〈δ(r − rij )〉ij , (5)

where ûi , ûj are convenient unit vectors fixed on molecules
i, j. In the uniaxial model û would just be the rod axis. In an
atomistic simulation the choice of the reference centers and
of the vector û is not univocal and actually in some cases it
might be convenient to introduce more than one to give a more
complete description. In Subsections III C–III I, we report our
results for these one and two molecule properties.

C. Orientational order

For a uniaxial phase, the probability of finding a molecule
at an angle β with respect to the phase director can be ex-
panded in an orthogonal Legendre basis, a special case of
Eq. (1), as

P (cos β) =
∞∑

L=0

2L + 1

2
〈PL〉PL(cos β), L even. (6)

The second moment of the single molecule orientational
distribution 〈P2〉, which is commonly used to characterize the
average degree of alignment of a liquid crystal phase,35 has
been calculated in a rotationally invariant way through a stan-
dard procedure for liquid crystal simulation studies,19 which
requires to build and diagonalize an ordering matrix Q, sum-
ming over all N molecules of the sample:

Q(t) = 1

2N

N∑
i=1

[3ûi(t) ⊗ ûi(t) − I] , (7)

where ûi is the chosen reference molecular axis and I is
the identity matrix. The instantaneous scalar order parame-
ter P2(t) can be obtained from the eigenvalues λ−(t), λ0(t),
λ+(t), with λ−(t) < λ0(t) < λ+(t), of the Q matrix at time t.
According to the most common convention, P2(t) corresponds
to the largest eigenvalue, which is to say P2(t) = λ+, and once
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a sufficiently long equilibrium trajectory is available, its over-
all average 〈P2〉 is calculated averaging over the production
trajectory.

As can be seen in Fig. 2, at high temperatures the sam-
ple possesses a very low value of 〈P2〉, ranging from 0.1 to
0.2. Between 313 and 312 K we observe a steep rise of the
order parameter, suggesting the spontaneous onset of a ne-
matic phase. After the isotropic-nematic transition, 〈P2〉 in-
creases from 0.4 to slightly less than 0.6 as we move toward
the nematic-smectic transition.

Still in Fig. 2, the results obtained by our simulations
can be compared with different sets of experimental data, in
particular with birefringence and Raman depolarization spec-
troscopy measurements.11, 37–39 We notice that our simulated
data are in good agreement with the average of the various,
rather scattered experimental data sets.

The NI transition is characterized by considerable fluc-
tuations of 〈P2〉, with a standard deviation comparable to
the value of the order parameter itself (cf. the error bars in
Fig. 2). This is due to the presence of order-disorder fluctua-
tions during the time evolution of the sample and is consistent
with the weak first order nature of the NI transition. We ar-
bitrarily choose to consider a phase as definitely “ordered”
when it shows a 〈P2〉 greater than 0.3, hence locating TNI be-
tween 312 and 313 K. This assumption can be verified by
plotting the histograms of P2(t) for all the configurations in
each temperature run19, 41 (Fig. 3), allowing to easily spot the
temperature at which the NI transition takes place. For tem-
peratures above 313 K, it can be noticed how every sample
possesses a broad distribution of P2(t), with a peak close to 0,
highlighting how most of the configurations in those samples
are isotropic. On the other hand, below 312 K the peaks are
sharper and shifted toward high values of the order parame-
ter, as a consequence of the onset of ordered liquid crystalline
phases such as the nematic and smectic ones. The sudden in-
version of the population of configurations possessing high or
low P2(t) values taking place between 313 and 312 K confirms

our estimate of the transition temperature, which is closer to
the experimental value42 of 313.6 K with respect to our pre-
vious simulation results of 317 K obtained on samples of 250
molecules.10 This also indicates the importance of the sample
size, which must be sufficiently large in order to accurately
locate phase transitions. Below 308 K, the order parameter is
almost constant with temperature and its fluctuations become
much smaller, thus presenting sharper distributions.

The orientational order of the simulated samples was
further investigated by studying the fourth rank order param-
eter 〈P4〉,35 which is related to the fourth moment of the sin-
glet orientational distribution and that can be calculated as
follows:

〈P4〉 = 1

8N

〈
N∑

i=1

(35 cos4 βi − 30 cos2 βi + 3)

〉
t

, (8)

where β i is the angle between the reference axis of the
ith molecule and the instantaneous phase director at time
t. The value of 〈P4〉 at each temperature is compared in
Fig. 2 with experimental data from Raman depolarization
measurements:40 it can be seen that the experimental trend
is again well reproduced by simulations. Moreover, the pro-
file of the fourth rank order parameter follows closely the one
observed for 〈P2〉, dropping to zero above 312 K and thus con-
firming our previous estimate of the transition temperature.

D. Pair correlations

We start showing in Fig. 4 the radial distribution, g0(r),
calculated here considering the center of charge of each
molecule as the reference point (Fig. 5). Figure 4 shows
the radial distributions of the smectic, nematic, and isotropic
phases as a function of intermolecular separation r. It can be
seen that each phase has a liquid-like distribution, character-
ized by the absence of peaks in the long range region and
tending to its asymptotic value of 1 for r greater than 30 Å. In
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FIG. 4. Variation of the 8CB dipole orientational correlation functions G1(r),
G2(r) and of the radial distribution of centers of charge, g0(r) for samples at
304, 311, and 316 K (representing the smectic, nematic, and isotropic phases,
respectively).

the short range region though, each phase shows three distinct
peaks, indicating the presence of local coordination shells. In
particular, the first peak located at about 5 Å suggests the
presence of quasi dimeric associations (as shown in Fig. 5)
both in the isotropic and anisotropic phases, a common fea-
ture for systems composed of molecules bearing a strong ter-
minal polar group. When the temperature is raised, the short
range structure becomes less definite as shown by the radial
distribution of the isotropic sample at 316 K.

Since we are particularly interested in the dipole orga-
nization, we have then evaluated the first and second rank
positional-orientational distribution GL(r) choosing as refer-
ence vectors ûI , ûJ , the electric dipole unit vectors μ̂I , μ̂J in
order to obtain the first and second rank distributions G

μ

1 (r)
and G

μ

2 (r):

G
μ

1 (r) = 〈δ(r − rij )(μ̂i · μ̂j )〉ij /〈δ(r − rij )〉ij , (9)

G
μ

2 (r) =
〈
δ(r − rij )

[
3

2
(μ̂i · μ̂j )2 − 1

2

]〉
ij

/
〈δ(r − rij )〉ij ,

(10)

where rij is now the distance between the charge centers of
the i and j molecules.

In particular, the G
μ

1 (r) function shown in Fig. 4 allows
to clarify the local structure around each 8CB molecule. In
the short separation region, a negative value for G

μ

1 (r) is ex-
pected, since the first neighbouring molecules are oriented in
an antiparallel fashion, thus yielding a negative average of
μ̂i · μ̂j . At a slightly greater distance, a change of sign of
G

μ

1 (r) is observed, as molecules belonging to the next coor-
dination shell are in turn antiparallel to the ones in the first
shell (thus parallel to the reference molecule). Between 8 and
14 Å, we observe the same trend as described for the first and
second neighbours, but less pronounced since the influence of
the reference molecule gets weaker as the distance increases.
For long separations, the value of GL(r) tends to the limit of
the square of the order parameter of rank L, 〈PL〉2 as shown
in Refs. 35 and 41. Accordingly G1(r) tends asymptotically
to 0 as the interaction with the reference molecular dipole be-
comes negligible, therefore, leading to a random head-tail ori-
entation of most distant molecules.

The G2(r) function corresponds to evaluating the relative
order parameter P2 of a molecule with respect to the orienta-
tion of a reference molecule as a function of their intermolec-
ular distance. Figure 4 shows the presence of a peak in the
region r ≤ 5 Å, corresponding to the short range orientational
order arising from the packing interactions, in analogy with
the behavior even found isotropic fluids.9, 26 At greater dis-
tances, in our case for r > 30 Å, G2(r) decreases and tends
asymptotically to 〈P2〉2, the square of the order parameter of
the phase.41

E. Smectic order parameter

It is well known that 8CB presents a smectic phase be-
low 306.6 K.42, 43 To assess the validity of the force field de-
veloped in Ref. 10 also for these layered phases, we must de-
termine whether the simulated sample is able to reproduce
both the smectic-nematic transition temperature and proper-
ties such as the positional order parameter and layer spacing.

FIG. 5. The typical positional and orientational arrangement of neighbouring molecules belonging to two different sublayers in the SmAd phase. d is the layer
spacing and ε = d − 2λ is the interdigitation. The center of charge, which turns out to be pretty conformation independent, is located on the red colored carbon
atom.
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To characterize the smectic phase of the simulated sys-
tems, it is important to correctly evaluate the positional orga-
nization to compare it with available experimental data. As of
now, there is no standard method in literature to assess the po-
sitional order of smectic phases, thus we exploited 8CB sim-
ulated samples as a test bench to define a reliable protocol.
Since we wish to assess the robustness of our results we have
also studied, in addition to the N = 750 molecules sample at
300 K (which we will call system a from now on), three other
larger bulk systems: (b) N = 3000 at 300 K obtained starting
from a free standing thin film, (c) N = 3000 at 300 K obtained
from an isotropic bulk sample, and (d) N = 3000 at 310 K ob-
tained by heating a replicated sample of a.

These additional systems allow us to investigate the ef-
fect of the sample size and preparation on the positional or-
der and, in particular, to consider the thermal history of the
sample, i.e., how it was equilibrated before the onset of the
smectic phase. This could be important also when trying to
compare simulated properties to observed ones, since samples
of smectics that present a nematic are usually experimentally
prepared by cooling down a nematic sample which was pre-
viously aligned with an external field.

Going back to the description of positional order, we
recall that for a uniaxial phase the probability of finding a
molecule at a position z along the layer normal can be ex-
panded in an orthogonal Fourier basis, again a special case of
Eq. (1), as

P (z) = 1

d
+ 2

d

∞∑
n=1

τn cos(qnz), (11)

where d is the layer spacing, qn ≡ 2πn/d and we have as-
sumed the origin of the laboratory frame to be such that P(z)
= P(−z). τ n is the nth positional order parameter, defined as

τn =
∫ d

0
P (z) cos(qnz) dz = 〈cos(qnz)〉, n ≥ 1, (12)

where
∫ d

0 P (z) dz = 1 and z gives the position of the center
of mass of each molecule along the layer normal direction z,
which is here assumed to be coincident with the phase direc-

tor. This is appropriate for a smectic A and for our case as the
smectic phase of 8CB is not found to be tilted either experi-
mentally or in our simulations.

Notice that here we have considered that the coordinate
system origin can be chosen at will, which is fine for theoret-
ical treatments.27, 44, 45 However, in a computer simulation the
layers and thus the origin can fluctuate over time and we shall
see in Appendix A that an appropriate treatment that gives
τ n in a translationally invariant way is essential to properly
analyze simulated data. This is very much similar to obtain-
ing an orientational order parameter in a rotationally invari-
ant (scalar) form, as we have done before using the eigen-
values of the Q matrix. More specifically we have calculated
τ nwith two different methods, I and II, described in detail in
Appendix A. The first method is a refinement of that used by
De Gaetani and Prampolini17 and Zhang et al.18 who write the
positional order parameters as

τn =
√

〈cos(qnz)〉2 + 〈sin(qnz)〉2, (13)

while the second is based on the analysis of the transla-
tionally invariant two particle density autocorrelation (see
Appendix A) g(z12):

g(z12) = 1 + 2
∞∑

n=1

(τn)2 cos(qnz12). (14)

In Table I, we report the values of the main translational or-
der parameter τ 1 for systems a, b, c, and d obtained with
the two methods. It can be seen that the N = 750 molecules
system a presents a lower τ 1 compared to the larger ones,
while the smectic order in systems b and c is almost the
same. The influence of the history and size of the sample on
the layer spacing can be seen in Table I, where we also re-
port the time average of d for each system. System b fea-
tures the value of d closest to the experimental ones of
d = 31.422−31.746 Å, while in system c the layer spacing is
lower. In system a we find a slightly higher value of d together
with an order of magnitude higher uncertainty, probably due
to the low number of layers.

TABLE I. Simulated values with respect to the temperature of: positional order parameter and layer spacing from method I: (τ1)I , d; positional order param-
eters and layer spacing from method II: (τ 1)II, (τ±

1 )II and dgz; shift between up and down sublayers λ; sublayer interdigitation ε; experimental layer spacing
dexp .

Sample T (K) N (τ 1)I d (Å) (τ 1)II (τ±
1 )II dgz (Å) λ (Å) ε (Å) dexp

21

a 300 750 0.13 ± 0.03 32 ± 1 0.12 0.28 32.3 14.4 3.6 31.2
b 300 3000 0.15 ± 0.01 31.3 ± 0.1 0.15 0.35 31.2 13.8 3.6 31.2
c 300 3000 0.15 ± 0.02 30.4 ± 0.2 0.14 0.33 30.4 13.5 3.4 31.2
d 310 3000 0.04 ± 0.01 26 ± 9 . . . . . . . . . . . . . . .

302 750 0.13 ± 0.02 32 ± 2 0.10 0.24 31.8 14.0 3.8 31.2
304 750 0.12 ± 0.04 32 ± 2 0.10 0.23 32.3 14.2 4.0 31.2
305 750 0.15 ± 0.03 32.5 ± 0.4 0.13 0.29 32.5 14.3 4.0 31.2
306 750 0.13 ± 0.03 32.5 ± 0.9 0.11 0.25 32.6 14.3 3.9
307 750 0.12 ± 0.04 32 ± 1 0.11 0.24 32.6 14.3 4.0
308 750 0.10 ± 0.04 32 ± 2 0.07 0.16 31.9 14.1 3.7
309 750 0.10 ± 0.02 32 ± 2 0.07 0.17 31.8 14.0 3.7
310 750 0.08 ± 0.03 31 ± 3 0.07 0.16 31.9 14.1 3.7
311 750 0.04 ± 0.01 28 ± 5 0.05 0.11 31.6 14.0 3.5
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FIG. 6. The density autocorrelation g(z12) for systems a, b, c, and d.

In Fig. 6 it can be seen that, in agreement with the
results obtained from method I, system b presents slightly
higher layer spacing when compared to system c, once again
highlighting the effect of the sample equilibration prior to the
onset of the smectic phase. It can also be seen that system a
features lower density oscillations and a higher value for the
layer spacing. A flat g(z12) trend can be observed for system d,
suggesting the absence of positional order for the molecular
centers of mass in the nematic sample at 310 K.

Comparing our results to those from other groups, we no-
tice that the works from De Gaetani and Prampolini17 and
Zhang et al.18 report a considerable discrepancy between
the values of τ 1 calculated for small (N < 1000) and large
(N > 1000) samples, while in our case the positional order
parameter remains approximately the same regardless of the
sample size (Table II). This highlights that the correction we
propose in Appendix A, which takes into account the effect
of the finite size of the system and the choice of the sampling
region, is important for a correct evaluation of the positional
order parameter.

For samples with N > 1000, we see that our results are
in agreement with the ones from the two other groups. For
these large systems, the corrections we proposed play indeed
a small role since the size of the sample reduces the influence
of the spurious term discussed in Appendix A and it can be
assumed that the layer normals in Refs. 17 and 18 were close
to one of the box axes. It must be noted that for both small
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FIG. 7. Density correlation g(z12) along the z axis for samples at 304,
311, and 316 K (representing the smectic, nematic, and isotropic phases,
respectively).

and large systems, the value of the interlayer spacing d for
our simulations is the closest to the experimental values,22, 46

while the value of τ 1 for all the large simulations is signifi-
cantly lower than the experimental ones.47, 48

We can now exploit the positional order parameter ob-
tained to discuss the onset of the smectic phase, which ex-
perimentally occurs below 306.6 K42 for 8CB. In Fig. 7, the
g(z12) functions for N = 750 samples at different tempera-
tures are reported. At low temperatures the profile exhibits a
clear sinusoidal trend, due to the presence of smectic layers.
This behavior progressively disappears for samples at tem-
peratures above 307 K. The trend is consistent with the one
obtained for the values of τ 1 computed from methods I and
II (Table I), which is gradually decreasing above 307 K and
becomes negligible at 311 K. This result is in good agree-
ment with the experimental smectic-nematic transition tem-
perature of 306.6 K. It must be noted that in N = 750 sample,
quite large smectic fluctuations are still present up to 311 K
(Fig. 7 and Table I) while for the N = 3000 sample we find a
truly nematic phase already at 310 K (Fig. 6 and Table I). This
observation suggests that small size systems may favour posi-
tionally ordered phases above the smectic-nematic transition
temperature. In any case, the presence of smectic fluctuations
in the nematic temperature range is not surprising, as it has
been already observed experimentally in several works.46–50

TABLE II. Comparison of the positional order parameter τ 1, the layer spacing d and second rank orientational order parameter 〈P2〉 from the most recent
computational and experimental work available in literature. All atom, core, and N atoms refer to computations run on all atoms, on the phenyl core, and on the
nitrogen atom only, respectively.

N T (K) τ 1 d (Å) 〈P2〉

This work (method I) 750 300 0.13 (all atom) 0.25 (core) 32 0.62
De Gaetani and Prampolini17 192 300 0.21 (all atom) 27 0.57
De Gaetani and Prampolini17 768 300 0.21 (all atom) 26 0.66
Zhang et al.18 256 300 0.21 (N atoms) 28 0.45

This work (method I) 3000 300 0.15 (all atom) 0.3 (core) 31.3 0.64
De Gaetani and Prampolini17 1536 300 0.14 (all atom) 27–28 0.68
Zhang et al.18 1024 300 0.32 (N atoms) 28.5 0.49

Alexander et al.47 (neutron scattering) 293–305 0.46–0.57 31.5
Kapernaum and Giesselmann48 (X-rays) 292–309.5 0.64–0.74
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Since no evident discontinuity for τ 1 is present while
heating the sample, a second order nature for the smectic-
nematic transition can be assumed.

Regarding the interlayer distance, we can observe that
below 307 K the simulated samples feature a d of about
32 Å (Table I), which is closer to the experimental value46

of 31.7 Å with respect to previous simulation studies.16–18

Besides, the interlayer distance obtained from simulations re-
mains constant in the temperature range of the smectic phase,
in agreement with the trend observed through X-rays mea-
surements for 8CB by Urban and co-workers21 and, recently
for other smectics.49

F. Smectic Ad interdigitation

The smectic phase of 8CB, which belongs to the so-called
SmAd

51 category, is characterized by the presence of bilayers
formed by two interdigitated sublayers of molecules oriented
in opposite directions in order to optimize the interaction be-
tween the polar groups. In particular, 8CB bilayers are com-
monly described as partial, since the distance d between bi-
layers is lower than twice the molecular length l (about 1.4
times the length of one molecule for 8CB), differently from
smectic types composed by single layers, where d is about as
large as l.51 For a matter of convenience, we refer to molecules
forming the sublayers either as up(+) or down(−) molecules,
depending on whether their dipole moment is parallel or
antiparallel to the arbitrarily chosen direction of the layer
normal. The snapshot in Fig. 9 highlights the interdigitation
between up and down (red and blue) molecules forming the
bilayer of the simulated sample. We refer to the positional
order parameter of the up or down pair correlation functions
g±(z12) as τ±

1 . Values of τ±
1 calculated by fitting the distribu-

tion profiles with Eq. (A13) are reported in Table I. As shown
in Fig. 8, both g+(z12) and g−(z12) present the same trend,
but they are shifted by a phase factor q1λ. Once the values
of λ and d have been determined, the bilayer interdigitation
ε can be estimated (see the geometric representation of these
parameters in Fig. 5).
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FIG. 8. Comparison of up and down two particle autocorrelation function
g±(z12) with the one of the whole sample g(z12) for system a. Here g−(z12)
is a best fit function to the actual one which has been shifted of λ so that it
yields the total g(z12) when combined with g+(z12) (see Eq. (15)).

FIG. 9. Layer interdigitation in system c (replicated twice along x, y, and z
axes). Red and blue colors represent parallel (“up”) and antiparallel (“down”)
molecules.

The total pair correlation function g(z12) is then given by
the superposition of the up and down waves, provided they are
suitably shifted of q1λ:

g(z12) = 1

2
[g+(z12) + g−(z12 + λ)]

≈ 1+ (τ±
1 )2

{
cos

[
q1

(
z12 − λ

2

)]
+cos

[
q1

(
z12+ λ

2

)]}
.

(15)

Equation (15) reproduces the pair autocorrelation func-
tion of the whole sample (Fig. 8) which possesses a maximum
located at z12 = 0. We then fitted g±(z12) with Eq. (A13) ob-
taining the value of τ±

1 , which was then used as a parameter in
Eq. (15) to fit the total pair correlation function,52 obtaining
the values of d, λ and hence the interdigitation ε, reported in
Table I. It can be seen that τ±

1 is roughly twice τ 1 and that its
temperature trend closely follows the one of τ 1. In addition,
it must be noted that not only the layer spacing d but also
the interdigitation length ε (Fig. 5) is rather constant with the
temperature.

G. Mixed order parameters

Although we have discussed orientational and positional
orders separately, it is clear that they can, at least in princi-
ple, be correlated. Even though various simulations of 8CB
have appeared, we are not aware of the mixed orientational
positional parameters pL; n introduced in Eq. (3), with L > 0,
n > 0 being determined. Here, we wish to provide such an
evaluation and use it to test a simple approximation of the
mixed parameters as product of the positional and orienta-
tional orders.27

It is worth recalling that in the first molecular field the-
ory of smectic A liquid crystals proposed by McMillan,44

which succeeded in qualitatively reproducing the features of
smectic A phases, the internal energy of a single molecule
was expressed in terms of the orientational and mixed
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positional-orientational order parameters and only afterwards,
the theory was modified45 with the introduction of a pure posi-
tional order parameter. The averaged internal energy of a sin-
gle molecule for the coupled model was written by McMillan
as

U = −u0(〈P2〉2 + α(p2;1)2 + γ (τ1)2)/2, (16)

where u0, αu0, and γ u0 are the strengths of the orientational,
mixed, and positional contributions, respectively.

Kventsel et al.27 proposed an alternative simplified the-
ory for smectic A phases, where the mixed order parameter
term p2; 1 was replaced by the product of the positional and
orientational order parameters 〈P2〉τ 1.

This decoupled model has the advantage of making the
numerical solution of the mean field problem much easier.

Thanks to computer simulations, we can now test if the
approximations proposed in the theories were acceptable. In
particular, here we can test whether the decoupled model for
smectic A phases can describe also the interdigitated smectic
Ad phase.

In Table III, we report the values of pL; n =〈PLcos (qnz)〉
(see Eq. (3)) (with n = 1 and L = 2, 4) for the systems with
N = 3000 and N = 750 molecules. It can be seen that for
8CB the orientational and positional orders are actually cor-
related, with the average of the product pL; n being roughly
twice the product of the averages 〈PL〉τ n. For comparison, we
run the same calculation on smectic samples of α-sexithienyl
(T6) obtained from a recent work of Pizzirusso et al.,4 reveal-
ing that for that system the positional and orientational order
parameters are completely decoupled. These results suggest
that the approximation of pL; n = 〈PL〉τ n which has been used
in the Kventsel et al. model27 may not apply to 8CB smec-
tic Ad phase, while it seems to be suitable for simple smectic
A phases such as the one of T6. This result points out once
again to the important role of simulations, since mixed or-
der parameters are not currently available from experimental
measurements.

H. Comparison with experimental positional order

There are very few experimental determinations of po-
sitional order, indeed only perhaps a dozen or so, which is
surprising considering the hundreds of papers highlighting
the interest for smectics. Fortunately 8CB is one of the most
studied cases. A first work was that of Leadbetter,53 which
proposed a procedure for obtaining τ 1 from the first reflec-
tion peak in a macroscopically unoriented smectic polydo-
main. More recently, Kapernaum and Giesselmann48 using
X-ray found τ1 = 0.64–0.74 in the interval T = 309.5–292,
while Alexander et al.47 using neutron scattering reported a
value of τ 1 = 0.46 – 0.57 in the region T = 293–305. The
simulated results for the positional order appear significantly
smaller than those obtained from the experimental ones. It is
interesting to notice that the positional order obtained from
the venerable McMillan theory already mentioned44 is more
similar to the experimental ones than ours, but it is well know
that mean field theories overestimate ordering (e.g., even pre-
dicting a phase transition in one-dimensional systems, where
it does not exist54). It is worth examining more in detail some
possible sources for the discrepancy with experiment and in
particular how the positional order is extracted from scatter-
ing measurements.

We start writing the differential elastically scattered cross
section per molecule as a sum taken over all the atomic centers
and the intensity at scattering vector q will be proportional to
the square of this total wave:

I (q) =
〈∣∣∣∣∣

N∑
i=1

∑
a∈i

Aa,i(q)

∣∣∣∣∣
2〉/

N (17)

= k

N∑
i,j=1

M∑
a,b=1

a∈i,b∈j

aa,i(q)a∗
b,j (q)〈ei[q·(ra,i−rb,j )]〉, (18)

where k is a proportionality constant and the sum runs on the
M atoms a, b belonging to each of the N molecules i and j and
positioned at ra, i, rb, j. If we can assume the scattering fac-
tors aa, i(q) to be approximately the same for all the relevant

TABLE III. Mixed order parameters pL; n compared to the products of the average order parameters 〈PL〉τ n.
The positional term τ n and the layer spacing d were computed according to procedure described in Appendix A
(method I).

Sample T (K) N p2;1 〈P2〉τ 1 p4;1 〈P4〉τ 1

a 300 750 0.13 ± 0.04 0.08 ± 0.02 0.08 ± 0.03 0.03 ± 0.01
b 300 3000 0.16 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.041 ± 0.005
c 300 3000 0.15 ± 0.02 0.09 ± 0.01 0.08 ± 0.01 0.039 ± 0.006
d 310 3000 0.04 ± 0.02 0.017 ± 0.004 0.015 ± 0.008 0.004 ± 0.001

302 750 0.14 ± 0.03 0.08 ± 0.02 0.08 ± 0.03 0.03 ± 0.01
304 750 0.13 ± 0.05 0.07 ± 0.02 0.07 ± 0.03 0.03 ± 0.01
305 750 0.16 ± 0.03 0.09 ± 0.02 0.09 ± 0.02 0.04 ± 0.01
306 750 0.14 ± 0.03 0.08 ± 0.02 0.08 ± 0.02 0.03 ± 0.01
307 750 0.13 ± 0.04 0.07 ± 0.02 0.07 ± 0.03 0.03 ± 0.01
308 750 0.11 ± 0.04 0.06 ± 0.02 0.06 ± 0.04 0.02 ± 0.01
309 750 0.10 ± 0.03 0.06 ± 0.02 0.05 ± 0.02 0.02 ± 0.01
310 750 0.08 ± 0.03 0.04 ± 0.02 0.04 ± 0.02 0.012 ± 0.008
311 750 0.03 ± 0.01 0.006 ± 0.002 0.014 ± 0.008 0.0007 ± 0.0009
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atomic centers

I (q) = k|a(q)|2S(q), (19)

where we have introduced the structure factor S(q)

S(q) = 1

N

N∑
i,j=1

M∑
a,b=1

a∈i,b∈j

〈ei[q·(Ra,i−Rb,j )]〉

= 1 + Ss(q) + Sd (q), (20)

where the second and third terms represent the sin-
gle molecule (“self”) and the pairwise (or “distinct”)
contributions,

Ss(q) = 1

N

N∑
i=1

M∑
a,b=1
a =b∈i

〈ei[q·(Ra,i−Rb,i )]〉 (21)

and

Sd (q) = 1

N

N∑
i,j=1
i =j

M∑
a,b=1

a∈i.b∈j

〈ei[q·(Ra,i−Rb,j )]〉. (22)

Writing the lab frame position of each atomic center as

Ra,i = Oi + ra,i , (23)

where Oi is the position of the center of mass of the ith
molecule and ra, i is the position of atom a in the ith molecule
fixed frame, we have

Ss(q) =
M∑

a,b=1
a =b

〈ei[q·(ra−rb)]〉 (24)

and

Sd (q) = 1

N

N∑
i,j=1
i =j

M∑
a,b=1

a∈i,b∈j

〈ei[q·(Oi−Oj )]ei[q·(ra,i−rb,j )]〉. (25)

It is clear that the only term containing information rele-
vant for smectic positional order is Sd(q), which depends on
molecule-molecule distances. Thus, here we only concentrate
on the distinct contribution and in particular, if we now con-
sider the vertical reflections from the smectic planes, q = (0,
0, 1)qn , qn ≡ 2πn

d
then

Sd (00n) = 1

N

N∑
i,j
i =j

M∑
a,b=1

a∈i,b∈j

〈eiqnzij eiqn[z·(ra,i−rb,j )]〉, (26)

where zij = zi − zj.
Repeated use of the Rayleigh expansion and of the trans-

formation properties of Wigner rotation matrices (see Ap-
pendix B) shows that, assuming a uniaxial smectic and ef-

fective uniaxial molecular symmetry

Sd (00n) =
∑
L,L′

cnLL′ 〈cos(qnzij )PL(cos βi)PL′(cos βj )〉ij

= cn00〈cos(qnzij )〉ij
+ 2cn02〈cos(qnzij )P2(cos βj )〉ij
+ cn22〈cos(qmnij )P2(cos βi)P2(cos βj )〉ij + ....

(27)

The first term is the only one retained in the classical
formulation,53, 55 assuming

〈cos(qnzij )〉ij = 〈cos(qnzi)〉2. (28)

Thus for the first two reflections,

Sd (001) ≈ c100τ
2
1 , (29)

Sd (002) ≈ c200τ
2
2 , (30)

and so on. We see that the root of the difficulty in compar-
ing the simulated data with those obtained from an analy-
sis of scattering data is first in the presence of the scaling
factors cnJL and then in the neglect of the mixed positional-
orientational terms. Even assuming these to be negligible the
determination of the proportionality factor is non-trivial. In a
first approach, it was assumed that a calculation could be per-
formed in the limiting case of perfect order.53 In a more recent
method48 a global fit to different temperatures was performed
assuming a Haller type56 dependence of the smectic order on
temperature. In a third case, absolute measurements were per-
formed using small angle neutron scattering.47 In all these
cases, it is clear that a number of assumptions are implied, and
that additional terms, such as the mixed order parameters, that
we have shown to be non-negligible, should at least in princi-
ple have to be considered. Indeed in a recent paper, Gorkunov
et al.57 have shown, examining various types of model inter-
action potentials, that the mixed order parameter may or may
not be well approximated as a product of the translational
and orientational order parameters and, more importantly, that
for some potentials which promote microscale segregation,
the mixed order parameter may even be the largest order
parameter.

It might thus be that a more refined analysis of X-ray and
neutron scattering data might be needed before a comparison
between simulated and experimental data that can be consid-
ered decisive for the validation of the MD results should be
attempted.

I. Translational diffusion

Given the anisotropic nature of the 8CB LC phase, it is
of interest to study the dependence of translational diffusion
tensor components Dii as a function of the temperature, and
hence in each different phase (in particular in the SmAd one).
This can also be of help in order to validate the simulation
results through the comparison with experimental data58 also
for the dynamic and not only for the structural aspects.

From simulations, Dii can be calculated from the mean
square positional displacements using the classical Einstein
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formula

Dii = lim
t→∞

〈(Ri(0) − Ri(t))2〉
2t

, (31)

where Ri is the component of the molecular position vector of
each molecule along the axis i = x, y, z of the director frame.
In practice, we assume that the asymptotic long time limit
and the diffusive regime is reached for values of t � 10 ns.
The parallel and perpendicular diffusion coefficients D‖ and
D⊥ correspond to Dzz and (Dxx + Dyy)/2, respectively, while
the isotropic diffusion coefficient Diso was calculated as (Dxx

+ Dyy + Dzz)/3.
The simulated and experimental isotropic diffusion coef-

ficients follow an Arrhenius temperature dependence:

Diso = D0e
−Ea/kT , (32)

where D0 is the diffusion coefficient for temperature T → ∞
and Ea is the activation energy required for molecules to get
over the potential barrier encountered while moving across
the sample.

We perform a linear interpolation of the diffusion coeffi-
cients reported in Table IV, obtaining a simulated activation
energy Ea, sim = 34.02 kJ mol−1, very close to the reported
experimental value58 Ea, exp = 34.12 kJ mol−1, and a D0, sim

=1.97 × 10−4 m2/s against the experimental value we extrap-
olated from the work of A. Maliniak and co-workers58(D0, exp

∼ 1.96 × 10−5 m2/s). The D0 value obtained from UA sim-
ulations is thus roughly one order of magnitude higher than
the one found experimentally. This is not surprising, as it is
well known that for molecules modeled at the united atoms
level of detail, the calculated diffusion coefficients are usu-
ally higher than experimental values10, 18 as a result of the
smoother molecular surface. It is however interesting to see,
even if this feature of UA models prevents us from performing

TABLE IV. Simulated values with respect to the temperature of: mass den-
sity ρ – nematic order parameter 〈P2〉 – average value of the length to breadth
molecular aspect ratio l/w, calculated from the dimensions of the minimal
rectangular box containing the molecule rotated in its inertial frame1 – diffu-
sion coefficients in 10−10 m2/s: isotropic coefficient Diso, rescaled isotropic
coefficient Diso, r, parallel coefficient from rescaled isotropic through CM
model D‖, CM, perpendicular coefficient from rescaled isotropic through CM
model D⊥, CM.

T (K) ρ (g/cm3) 〈P2〉 l/w Diso D‖ D⊥

300 1.000 0.64 3.35 2.6 3.8 1.9
302 0.998 0.62 3.37 2.6 3.9 2.0
304 0.995 0.61 3.36 2.8 4.1 2.1
305 0.993 0.62 3.36 2.8 3.9 2.2
306 0.992 0.59 3.35 3.0 4.4 2.3
307 0.990 0.58 3.34 3.0 4.3 2.3
308 0.988 0.54 3.33 3.3 4.8 2.6
309 0.987 0.56 3.16 3.4 4.9 2.6
310 0.985 0.52 3.32 3.6 5.2 2.8
311 0.982 0.45 3.28 3.8 5.4 3.1
312 0.981 0.43 3.28 4.0 5.5 3.2
313 0.975 0.20 . . . 4.4 . . . . . .
314 0.973 0.16 . . . 4.5 . . . . . .
316 0.970 0.14 . . . 4.8 . . . . . .
320 0.963 0.11 . . . 5.4 . . . . . .

a comparison with the absolute values of experimental results,
whether we can at least satisfactorily obtain the anisotropy
and the temperature dependence of the translational diffusion
tensor.

In particular, we tried two scaling procedures that, given
a simulated diffusion coefficient, will return a rescaled one
directly comparable to experimental values.

(i) The first, very simple, is based on introducing two em-
pirical scaling factors:

α = D0,exp

D0,sim

, β = Ea,exp

Ea,sim

, (33)

which in our case correspond to α = 0.1 and β = 1.01, to be
employed in the following expression:

Diso,r = αe(1−β)
Ea,sim

kT Diso,sim, (34)

where Diso, r is the simulation-rescaled isotropic diffusion co-
efficient. We applied Eq. (34) not only to rescale the isotropic
diffusion coefficient, but also to the components D‖ and D⊥ in
the LC phase. It is worth noting that this approach based only
on a rescaling of the isotropic diffusion coefficients might fail
since, in particular, the Arrhenius equation does not necessar-
ily hold when a liquid crystal phase is present, so that we do
not necessarily expect D‖ and D⊥ in both nematic and smectic
ranges to be represented by the equivalent of Eq. (32). How-
ever, as we can see from Fig. 10, in practice the agreement
turns out to be quite good.

(ii) The second procedure, that tries to provide a more
solid basis for scaling also the diffusion components, is based
on the Chu and Moroi (CM) model,58, 59 which allows to com-
pute D‖ and D⊥ for nematic phases as a function of the scalar
order parameter 〈P2〉, ignored in the previous approach, as
follows:

D‖ = 〈Diso〉
[

1 + 2〈P2〉 1 − ξ

2ξ + 1

]
(35)
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perimental transition temperatures.
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and

D⊥ = 〈Diso〉
[

1 − 〈P2〉 1 − ξ

2ξ + 1

]
, (36)

where ξ = πw/(4l) is a geometrical factor for rod-like
molecules of length l and section w. Through the CM model,
once Diso, sim, 〈P2〉 and ξ are determined from the simulation
at each temperature, we can obtain rescaled parallel and per-
pendicular diffusion coefficients D‖, CM and D⊥, CM in the ne-
matic phase using Eqs. (34)–(36). It is interesting to see how
well the CM model will perform in calculating diffusion co-
efficients using only orientational order parameter even for
samples in the smectic phase, where more complex models
taking into account also positional order should in principle
be better suited for the task.60

In Fig. 10, we report a comparison between the two sets
of simulation-rescaled diffusion coefficients and the experi-
mental ones. As shown by the plots, once adequately rescaled,
the diffusion coefficients of the simulated samples accurately
follow the experimental trend. Moreover, it can be noticed
that there is only a slight difference between the values of
D‖ and D⊥ calculated from the simple rescaling with Eq. (34)
and those predicted by the CM model, the latter method being
more effective for D‖.

Turning now to discussing the mobility results, we see
first that, as expected for nematic phases, the diffusion along
the director is faster compared to the perpendicular one. This
behavior is inherited also in the smectic phase, without show-
ing any evidence of discontinuity in correspondence of the
smectic-nematic transition. This trend might seem surprising
considering the idealized picture of a smectic phase as a set of
stacked two-dimensional fluid layers, as one would expect a
lower diffusion along the director and thus across layers, due
to the presence of an interlayer potential. On the other hand, it
has been reported several times in previous experimental61–63

and computational4, 15 studies that 8CB exhibits a smectic
phase with a nematic-like diffusional behavior and it is com-
forting to see that this is also reproduced in our work.

IV. CONCLUSIONS

We have investigated the liquid crystalline, nematic and
smectic, phases of 4-n-octyl-4′-cyanobiphenyl with atomistic
molecular dynamics simulations, by performing a progres-
sive cooling of an isotropic sample. We observed the spon-
taneous onset of a smectic phase, in a sample composed by
750 molecules with periodic boundary conditions, which we
thoroughly investigated and characterized by determining its
density, orientational, positional and orientational-positional
order parameters. The isotropic-nematic and the nematic-
smectic transition temperatures were reproduced in very good
agreement with experiment42 (respectively, within 2 K and
4 K) and a satisfactory agreement with birefringence37–39 and
polarized Raman data11, 40 was also found for the second and
fourth rank orientational order parameters 〈P2〉, 〈P4〉.

The determination of the mixed positional-orientational
order parameters allowed us to evaluate for the first time
the correlation between positions and orientations in smectic
phases.

We have also proposed a general protocol for determin-
ing the positional order parameter τ 1 for smectic A phases
from molecular dynamics simulations and we found that, for
both N = 750 and various larger, N= 3000 molecules sam-
ples with different thermal histories, τ 1 is somewhat lower
than the experimental values reported so far from X-ray and
neutron scattering measurements.47, 48 We then discussed in
detail and obtained, to our knowledge for the first time, some
explicit molecular expressions for the quasi-Bragg smectic
reflection spots in terms of the order parameters, showing
that the expressions typically used in the analysis can be
somewhat oversimplified in that they neglect some contribu-
tions from mixed positional orientational order parameters.
We consider this as a possible source of the apparent imper-
fect agreement between calculated and experimental τ 1 since
on the other hand the layer spacing d exhibited by our sam-
ples is in very good agreement with the experimental X-ray
values.21

As far as dynamics is concerned, we have evaluated
the diffusion tensor components for molecular translations
inside and across the smectic layers. Although the abso-
lute values of the diffusion coefficients are roughly an or-
der of magnitude larger than experiment, as usually found for
united atoms models, we have shown that a simple rescal-
ing can be used to closely reproduce the experimental tem-
perature variation trend58 of the diffusion tensor components.
In particular, we have also observed that the diffusion co-
efficient across the layers is higher, up to a factor of two,
than that for diffusion in the layer, as found experimentally
for 8CB.

In summary, we can conclude that the force field devel-
oped in Ref. 10 is validated also for reproducing and pre-
dicting absolute values of structural data and, up to a scaling
factor, translational diffusion for the smectic phase of 8CB.
We trust our study will stimulate further investigations of the
smectic positional and positional-orientational order param-
eters, that are key to a full understanding of this important
liquid crystal layered phase, but to date much less explored
that their orientational counterparts.
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APPENDIX A: CALCULATION OF POSITIONAL
ORDER PARAMETERS

In this appendix, we report details of the two procedures
we have employed to obtain positional order. To start with,
we notice that to correctly determine the positional order of
a sample, it is necessary to sample a portion of the system
which can faithfully provide the probability distribution of the
phase, thus having the same surface area for any value of z,
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and possibly containing an integer number of layers. The for-
mer condition is satisfied only for a box where the director
coincides with one of the Cartesian axis. To overcome this
issue, we have replicated the simulation box in order to ob-
tain a quasi-cubical cell. Then we have considered only the
molecules enclosed in a cylinder with the long axis parallel
to the director contained in the largest sphere inscribed in the
replicated cell.

Once selected a meaningful sampling region, we have
identified two possible ways to determine the positional or-
der of a smectic sample.

Method I. The instantaneous positional order parameter
τ n (Eq. (12)) can be computed as the sample average,

τn = 1

N

∣∣∣∣∣∣
N∑

j=1

exp(iqnz)

∣∣∣∣∣∣
= |〈cos(qnz)〉 + i〈sin(qnz)〉|
=

√
〈cos(qnz)〉2 + 〈sin(qnz)〉2. (A1)

This expression of τ n takes into account that the den-
sity distribution does not necessarily present a maximum at
z = 0 but, say, at a certain z = z0 unknown to begin with
and possibly to change from one instant of time to another.
Equation (A1) can be easily proved since

〈cos(qnz)〉 =
∫ a+d

a

P (z + z0) cos(qnz) dz

= τn cos(qnz0), (A2)

〈sin(qnz)〉 =
∫ a+d

a

P (z + z0) sin(qnz) dz

= −τn sin(qnz0), (A3)

for an arbitrary a, suggesting that for each snapshot the in-
stantaneous phase factor can be estimated as

q1z0 = 1

n
atan2

( 〈cos(qnz)〉
τn

,
〈sin(qnz)〉

τn

)
, (A4)

where atan2(y,x) returns the angle between the x-axis and the
vector from the origin to (x, y) in the correct quadrant,64 e.g.,
for positive arguments atan2(y, x) ≡ atan(y/x).

We can then further average the instantaneous τ n over the
trajectory to obtain the time average value.

While apparently simple, the evaluation of τ n is not
straightforward, since the instantaneous value of the layer
spacing d is obviously not known beforehand. To over-
come this issue, for each configuration we first evaluate
〈cos (2π /d′)〉 and 〈sin (2π /d′)〉 in terms of an arbitrary tenta-
tive layer spacing d′, and then scanning d′ and using Eq. (A1)
we obtain a plot of τm(d′). We can then select the value of d′

that maximizes τm(d′) as the instantaneous layer spacing of
the sample (see Fig. 11). In order to justify such procedure,
and also to evaluate the presence of errors resulting from the
finite size of the sample box, we derive analytical expressions
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FIG. 11. τ 1(d′) as a function of the trial layer spacing d′ for simulated sys-
tem b (color filled regions) and for method I with τ1 = 0.11, d = 31.6 Å,

L = 110 Å, and z0 = 14 Å, with (blue lines, Eq. (A10)) and without (green
lines, Eq. (A1)) removal of the spurious factor.

for 〈cos (2mπ /d′)〉 and 〈sin (2mπ /d′)〉,〈
cos

(
2mπz

d ′

)〉
=

∫ b

a

[
1

L
+

∑
m

2τn

L
cos (qn(z + z0))

]

× cos

(
2πmz

d ′

)
dz

= 1

q ′
mL

sin(q ′
mz)

∣∣∣∣
b

a

+
∑
n=1

τn

L

[
1

A
sin(Az + qnz0)

]∣∣∣∣∣
b

a

+
∑
n=1

τn

L

[
1

B
sin(Bz + qnz0)

]∣∣∣∣∣
b

a

, (A5)

〈
sin

(
2mπz

d ′

)〉
= − 1

q ′
mL

cos(q ′
mz)

∣∣∣∣
b

a

−
∑
n=1

τn

L

[
1

A
cos(Az + qnz0)

]∣∣∣∣∣
b

a

+
∑
n=1

τn

L

[
1

B
cos(Bz + qnz0)

]∣∣∣∣∣
b

a

, (A6)

with

A = 2π (nd ′ + md)

dd ′ , B = 2π (nd ′ − md)

dd ′ , (A7)

where q ′
m = 2πm/d ′ and the cell length L = b − a, with a

and b being the generic cell boundaries.
It can be seen that both 〈cos (2mπ /d′)〉 and 〈sin (2mπ /d′)〉

are the sum of three terms. The first term arises solely from
the finite size of the cell and tends to zero for L tending to
infinity. The second term is a function of τ n but does not show
a maximum for integer m and is negligible even at fairly small
values of L. The third term is the one responsible for the peaks
visible in the plot of τm(d′), corresponding to τ n. This can be
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demonstrated by evaluating the limit for δ ≡ md′ − nd tending
to zero,

lim
δ→0

〈
cos

(
2πmz

d ′

)〉
= τn cos(qnz0), (A8)

lim
δ→0

〈
sin

(
2πmz

d ′

)〉
= −τn sin(qnz0). (A9)

This shows that τm(d′) has multiple peaks if the phase
presents higher order terms of positional order. In particular,
n > m and n < m peaks will appear at the left and the right
of the one corresponding to the mth order parameter, respec-
tively. In practice, it is convenient to subtract the first term
of Eqs. (A5) and (A6) before computing τ n(d′) since, espe-
cially when L is low and not a multiple of d, it can mask the
peak corresponding to τ n. In Fig. 11, the effect of the spuri-
ous terms can be observed qualitatively, and it can be seen to
affect both the height and the position of the peak.

When computing the positional order parameters from
the simulations, it is convenient to consider a virtual cylindri-
cal region going from −L to +L. This simplifies the expres-
sion for the positional order parameter, that can be calculated
as

τn(d ′) =
{[〈

cos

(
2nπ

d ′

)〉
− d ′

2πnL
sin

(
2πnL

d ′

)]2

+
〈

sin

(
2nπ

d ′

)〉2
}1/2

. (A10)

Additionally, Eqs. (A5) and (A6) suggest that the sharp-
ness of the peaks corresponding to τ n depends essentially on
the length of the sampling region, as L appears in the ar-
gument of the cosine and sine functions, increasing the fre-
quency of their oscillations.

It is worth noting that the choice of the computational ap-
proach used to obtain the average positional order parameters
can influence the estimate of the positional order of a smec-
tic sample. In their works, De Gaetani and Prampolini17 and
Zhang et al.18 determined τ 1 by summing the instantaneous
τ 1(d′) plots and taking the maximum value of the resulting
averaged plot as τ 1. However, this approach may lead to ar-
tificially low values of τ 1. In fact, the instantaneous value of
the layer spacing, d′, is not constant during the simulation,
thus the peaks of τm(d′) of different configurations do not su-
perimpose anymore, resulting in lower values of τ 1. To avoid
this problem, here we computed τ 1 as the average of the max-
imum values of the instantaneous τ 1(d′) plot.

This method to evaluate the positional order has the ad-
vantage of being computationally inexpensive, since it scales
with O(N). Additionally, the evaluation of τ (d) can be ex-
ploited also to compute the average probability density distri-
butions. Since liquid crystal phases are fluid systems and thus
the maxima of the density distribution tend to shift during the
simulation, we can exploit the phase factor calculated from
Eq. (A4) to rephase the instantaneous probability distribution
and obtain the average one.

Method II. A second way to estimate the positional or-
der exploits the two particle autocorrelation function P(z12),
which can be obtained as

P (z12) =
∫ d

0
P (z1) · P (z1 − z12) dz1

= 1

d
+ 2

d

∞∑
n=1

(τn)2 cos(qnz12), (A11)

with z12 = z1 − z2 being the projection of the intermolecular
distance on the layer normal. It is common to express such
function as

g(z12) = P (z12) d = ρ(z12)

ρN

. (A12)

In the simplest case,45, 65 the normalized autocorrela-
tion function along the layer normal (Fig. 8) described by
Eq. (A12) can be truncated to the first term in the Fourier
expansion as

g(z12) ≈ 1 + 2τ 2
1 cos(q1z12). (A13)

The values of τ 1 and d can then be extrapolated by least
square fitting the g(z12) profiles with Eq. (A13).66

The correlation function method has three main advan-
tages: (i) it is independent on any phase factor and on the
length of the sampling region L, always featuring a maxima at
z12 = 0, (ii) it increases the signal-to-noise ratio, allowing for
a more accurate fit, and (iii) it allows to obtain directly both
τ n and the layer spacing d. On the other hand, it scales with
O(N2) and thus is much slower than method I. Hence, its use
is recommended only for small samples, where the noise is
high and the sampling region is inevitably small.

APPENDIX B: EXPLICIT EXPRESSION FOR
SCATTERING COEFFICIENTS IN SMECTIC A

In this appendix, we derive an explicit expression for the
distinct molecules contribution to the scattered intensity Sd(q)
in the particular case of reflections from the smectic A planes
with q = (0, 0, 1)qn, qn ≡ 2πn

d
, thus assuming that the scat-

tering vector is parallel to the director, q||d is (see Eq. (26))

Sd (00n) = 1

N

N∑
i,j
i =j

M∑
a∈i,b∈j

〈eiqnzij eiqnz·ra,i e−iqnz·rb,j 〉, (B1)

where zij = zi − zj.
We use the Rayleigh expansion,

eiq·ra,i =
∑

iL(2L + 1)jL(qra,i)D
L
00(q̂ · r̂a,i), (B2)

with jL(qr) a spherical Bessel function.67 Now, applying the
closure relation of Wigner rotation matrices we have

DL
00(q̂ · r̂ai) =

∑
m

DL
0m(d − rai)D

L
m0(q − d) (B3)

=
∑
m

DL∗
m0(q − d)DL

m0(rai − d) (B4)
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=
∑
m,p

DL∗
m0(q − d)

〈
DL

mp(Mi − d)
〉
DL

p0(rai − Mi)

=
∑
m,p

δm0
〈
DL

mp(Mi − d)
〉
DL

p0(rai − Mi)

=
∑

p

〈
DL

0p(Mi − d)
〉
DL

p0(rai − Mi). (B5)

where (Mi − d) is the rotation from the lab (director) frame d
to the ith molecule frame Mi and (rai − Mi) the rotation from
the molecular frame to scattering center a. In particular, for
our geometry we have used DL∗

m0(0) = δ(m0),

〈eiqnzij eiqn·ra,i eiqn·rb,j〉=
∑

iL+L′
(2L + 1)(2L′ + 1)

jL(qnra,i)j
′
L(qnrb,j )∑

p,p′
DL

p0(rai − Mi)D
L′
p′0(rbj − Mj )

〈cos(qnzij )DL
0p(Mi− d)DL

0p′(Mj− d)〉.
(B6)

If the molecules are all identical, the position and orien-
tations of the center depend on internal geometry and we can
just write ra, i = ra, DL

p0(rai − Mi) = DL
p0(ra − M), etc. In-

troducing a molecular scattering tensor of rank L:

AL,p(q) =
M∑

a=1

iL(2L + 1)jL(qra)DL
p0(ra − M), (B7)

we can write

Sd (00n) =
∑
L,L′

∑
p,p′

AL,p(qn)AL′,p′
(qn)

〈cos (qnzij )DL
0p(Mi − d)DL′

0p′ (Mj − d)〉ij , (B8)

where we have indicated the average over all particle pairs as
〈[. . . ]〉ij. Assuming an effective uniaxial molecular symmetry,
invariance about a rotation around the molecular axis gives
δp0δp′0. Thus

Sd (00n) =
∑
L,L′

AL,0(qn)AL′,0(qn)

〈cos (qnzij )PL(cos βi)PL′(cos βj )〉ij , (B9)

where we have used the familiar notation PL(cos βi)
≡ DL

00(Mi − d). We can thus write explicitly the coefficients
in Eq. (28) as

cnLL′ = AL(qn)AL′
(qn). (B10)
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