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Abstract

We have performed an atomistic molecular dynamics study on
the molecular organization and liquid-crystalline properties of quin-
quephenyl (P5), a prototypical mesogen and a molecule of interest
for organic electronic. The thermotropic behavior reveals different
mesophases. When cooling down from the isotropic phase, we find a
transition to nematic (≈715 K), then to a smectic SA (≈657 K) and
another smectic, SXA (≈642 K), before a crystalline phase is recov-
ered (≈617 K). This phase sequence is compared with experimental
findings. We describe the different phases in terms of their molec-
ular organization, orientational and positional order parameters and
pair distribution functions as well as of their dynamics properties.
In particular we discuss the smectic phases, that have not yet been
characterized experimentally. Analyzing the effective shape of P5, we
conclude that its internal torsions and bending make it not as rigid as
could have been expected.
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1 Introduction

One of the most important challenges in the molecular design of liquid crys-
tals (LC) is that of relating a specific molecular structure to collective phys-
ical observables like morphologies, order parameters and phase transition
temperatures. This task would seem a nearly desperate one, in view of the
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variety of chemical species forming typical mesogenic molecules, the num-
ber of ways they can be connected, their internal flexibility and the ensuing
difficulties in defining a realistic set of interactions. In total contrast with
the complexity of this problem, it is striking that most textbook pictures [1]
and a vast number of coarse grained computer simulations of LC [2] resort to
the drastic simplification of representing elongated mesogenic molecules as
simple rod-like rigid objects like spherocylinders or prolate ellipsoids. These
minimalist type of models, with some further key assumptions on inter par-
ticle interactions are at the root of the Onsager [3–7] and Maier-Saupe [8–11]
theories for LC and their transitions, the main tools for our understanding
of these complex materials.

Thus in Onsager type theories, the particles are assumed to be hard
objects, only endowed with purely repulsive, steric, interactions when the
particles overlap, or zero otherwise. In the original theory [3], a system of
N elongated spherocylinders, i.e. right cylinders of length L, capped with
hemispheres of diameter D, is studied by minimizing its orientational free
energy written as a functional of the one particle orientational distribution
expanded at second virial level for a certain density ρ ≡ N/V. For sufficiently
high length to breadth aspect ratios, a = (L + D)/D the theory predicts
a spontaneous first order transition from isotropic to nematic phase as the
density increases. A standard way of comparing the predictions of any theory
of nematics with experiments is via the second rank order parameter 〈P2〉,
the most important element of the family of Legendre polynomial averages:

〈PL〉 =

∫ π

0

dβ sin βPL(cos β)P(cos β), L = 2, 4, . . . (1)

where P(cos β) is the distribution of orientations between the molecular axis
u and the director n, i.e. cos β ≡ u ·n. It is well known that Onsager theory
predicts a value of 〈P2〉 at the nematic-isotropic transition: 〈P2〉OnsNI ≈ 0.85,
and a entropy jump ∆SOnsNI ≈ 8R much higher than experiment for most
nematics [7, 12, 13].

The same system of hard spherocylinders has been studied in great detail
by Frenkel and coworkers using Monte Carlo (MC) computer simulations [14].
Onsager theory can predict rather well the phase diagram of suspension of
such hard rods with aspect ratio a & 10, determined by simulations [14], or in
experiments on viruses, nanorods and sufficiently long DNA sequences [15].
For shorter hard spherocylinders, simulations show [14] that for a / 4 the
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transition should go directly from isotropic to smectic, without an intervening
nematic.

An alternative minimalist theory is the Maier-Saupe one, which in the
original formulation considers attractive, van der Waals forces as dominat-
ing intermolecular interactions [8] and in a generalized form assumes that
the pair potential, whatever its physical origin, can be expanded in a series
of rotationally invariant functions of increasing rank [11]. In both cases in
this type of theory the pair potential is converted, upon averaging over an
isotropic distribution of distances and intermolecular vector directions, obvi-
ously a major assumption, to an effective, mean field orientational potential
U(β) acting on each individual molecule and determined self consistently. At
second rank level U(β) is proportional to the order parameter 〈P2〉 (or S as
is often called [1]), thus

〈P2〉 =

∫ π

0

dβ sin βP2(cos β) exp[a2P2(cos β)]/Z. (2)

where a2 ≡ ε̄〈P2〉/kBT is a parameter expressing the strength of the anisotropic
molecular field at temperature T and the pseudo-partition function Z ensures
normalization. The order at the transition is 〈P2〉MS

NI =0.43, independent on
length or aspect ratio, much more similar to experimental values for low
molar mass thermotropics. Given that most mesogenic molecules are non
rigid, have flexible chains, dipoles, or other specific moieties it is surprising
that these theories work relatively well in one or other respect. Since many
drastic approximations are introduced in each theory, the agreement, where
it exists, could be a result of cancellation of terms. For instance allowing
in Mean Field theory for higher rank terms [10] or molecular biaxiality [16]
could move the value of 〈P2〉NI up or down.

To compare theory and experiment, an ideal, simple, rigid and symmetric
molecule would be highly desirable. As vigorously pointed out by Samulski
and collaborators [17], para-quinquephenyl (PPPPP or P5) seems as close
as possible to such a molecule. “If ever there were a calamitic mesogen
that corresponded to the approximations used to derive S, the rod-like ther-
motropic LC PPPPP [. . . ] is one among them.” Studying such a molecule
without major approximations, such as those introduced in simple statistical
mechanics treatments would be highly desirable, e.g. to help clarifying the
role of flexible chains or polar groups, here absent, or of the aspect ratio
in determining nematic behaviour. Unfortunately P5 is a difficult system
to study experimentally, in view of its high transition temperature and of
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the possibility of chemical decomposition [18], and there is still a lack of
general consensus even on basic things like the sequence of phases observed
when cooling from isotropic down to crystal and the value of the clearing
temperature [17, 19–23]. A realistic computer simulation of P5 is also not
trivial [24], in view of the number of atoms in the molecule and the need to
consider internal rotations of the rings and more generally to optimize the
intramolecular and intermolecular contribution to the Force Field (FF) so as
to obtain a reasonable reproduction of the phase transition [25].

Interestingly, quinquephenyl and more generally polyphenyl derivatives
have also been for a long time prototype molecules for organic electronics,
along with oligothiophenes [26, 27]. In particular, there is a considerable
interest on these oligomers and their derivatives for their charge transporting
properties [28] and for their use as model semiconductors for transistors [29]
and as OLED [30]. Among the liquid crystalline ones, several derivatives
have been synthesized with lower clearing temperature with respect to P5
[22, 31, 32]. In view of this multiplicity of interests, we wish to provide a
simulation of quinquephenyl at full atomistic level of detail, developing a
suitable FF, validating it and calculating liquid crystal properties as well
as assessing its actual rigidity. We shall also discuss classical liquid crystal
theories in the light of these results.

2 Results and discussion

2.1 Force field and Simulations

The first step in employing atomistic MD to study quinquephenyl and its
phase behavior is the development of a properly tuned force field. Here par-
tial atomic charges were computed by quantum chemistry techniques at the
MP2//cc-pVDZ level of theory [33] with the ESP scheme [34], and inter-ring
torsional potentials were evaluated at the same level of theory and intro-
duced into an existing force field as customary [26]. We carried out Density
Functional Theory and MP2 calculations, which consistently produced sim-
ilar results for the two internal torsions, giving with a twist angle between
the phenyl rings of about 40 degrees and energy barriers between 1.5 and 3
kcal/mol (see also Figure S1), and hinting the possibility of significant in-
ternal rotations at the high temperatures experimentally required to melt
the material. Regarding the LJ parameters, preliminary tests on simulations
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run in a cooling down sequence were carried out on a sample of N = 200
molecules by adopting three existing parameterizations: AMBER-OPLS [35],
CHARMM27 [36] and the one optimized by Sherrill and coworkers for ben-
zene dimers on the basis of high level ab initio calculations [37]. As usual the
scaling factors for 1-4 intramolecular interactions were set to 5/6 for electro-
static and to 1/2 for LJ ones [35]. Unfortunately, all these force fields gave
unsatisfactory results in terms of phase diagram and density values, there-
fore we decided to empirically optimize the LJ interaction between aromatic
carbons so as to match the experimental density at 660K in the nematic
phase (see Figure 1 and SI Figure S2 for details). We found an optimal value
εC=0.105 kcal/mol, together with the OPLS parameters rC=1.908 Å for car-
bon and εH=0.015 kcal/mol, rH=1.459 Å for hydrogen [38], and these were
used in the molecular dynamics runs described here.

All the simulations were carried out with NAMD 2.8 [39] at constant
atmospheric pressure and temperature, using Berendsen’s barostat and ther-
mostat [38]. Periodic boundary condition were employed, adopting a cutoff of
12 Å for evaluating the Lennard-Jones (LJ) interactions and a smooth parti-
cle mesh Ewald method for electrostatic interactions [40] with grid spacing of
1.2 Å. A sample of N=1000 molecules contained in an orthorhombic cell was
studied in a series of cooling runs, starting from an isotropic configuration at
T=750 K, and gradually decreasing the temperature down to T=600 K, with
equilibration times of at least 50 ns and production times ranging from 40 to
70 ns. In a second, more limited, series of runs, a supercell of the P5 experi-
mental crystal structure (ZZZNKU01.cif, available from Cambridge Crystal-
lographic Structural Database [27]) containing 1408 molecules was simulated
at 300, 400, 500 and 600 K to compare with the structure of the crystal
phases obtained by cooling. Configurations were stored every 100 ps and all
the observables were calculated with in-house developed analysis codes.

2.2 Phase characterization

2.2.1 Density

We plot in Figure 1 the mass density obtained as a function of temperature
upon cooling down from the isotropic phase, together with available exper-
imental data [41]. Our Force Field is tuned for the nematic phase and we
see a good agreement with experiment at the control point (660 K) and in
the nematic and isotropic phase, at least where experimental data are avail-
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Figure 1: Comparison between simulated (full squares) and experimental
(empty squares) [41] mass densities for quinquephenyl at various tempera-
tures.

able [41]. Four phase transitions can be identified at T ≈ 715, 657, 642,
617 K from changes of slope of the curve. In Figure 2 we show typical
equilibrium snapshots of the molecular organizations obtained in the differ-
ent phases, using a colour coding of the orientations. They show at once the
disordered isotropic state (right) and on cooling down the onset of ordered
phases that we shall now analyze.

2.2.2 Orientational order

The characterization of a liquid crystalline phase inevitably deals with the
investigation of its orientational order with respect to the mesophase direc-
tor. As this preferred orientation can fluctuate during the simulation, we
determine the director n(t) at the successive time frames t considered in the
MD trajectory as the eigenvector corresponding to the largest eigenvalue of
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Figure 2: Typical molecular dynamics snapshots for the different phases,
taken from the descending temperature sequence studied for P5. The color
coding indicates orientations with respect to the director as from the palette.
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Figure 3: Second and fourth rank order parameters 〈P2〉 and 〈P4〉 vs tem-
perature for P5 as obtained from MD. The vertical dashed lines indicate the
estimated transition temperatures from present simulations.
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Figure 4: Average simulated order parameters 〈P2〉 and 〈P4〉 (filled blue
symbols) for the long axis of P5 as a function of T/TNI . We also report
experimental values obtained from deuterium NMR by Dingemans et al.
[17](a), from WAXS (b) and birefringence (c) by Kuiper et al. [42] and from
two diamagnetic susceptivity anisotropy set of experiments by Sherrel and
Crellin (d,e) [18]. The brown lines represent the Maier-Saupe mean field
theory predictions for 〈P2〉 and 〈P4〉.
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Figure 5: Simulated fourth vs second rank order parameters for P5 (blue
symbols and dotted line as a guide for the eye). Maier-Saupe results (red
continuous line), algebraic approximation [43] (black dotted line) and Faber
theory [44,45].

the ordering matrix, Q [25, 46,47]:

Q(t) =
N∑
j=1

[3uj(t)⊗ uj(t)− E] /2N, (3)

where uj(t) is the chosen molecular reference axis for molecule j; E is the
identity matrix and the sum runs over all the N molecules of the sample.
Here we chose as uj(t) the principal axis of the inertia tensor for molecule j
corresponding to the lowest eigenvalue. The instantaneous order parameter
P2(t) can be obtained from the eigenvalues λ−(t) < λ0(t) < λ+(t) of Q(t).
Here P2(t) is calculated as P2(t) = −2λ0(t), as suggested by Eppenga and
Frenkel [48]. The instantaneous eigenvalues of Q(t) are averaged over a
sufficiently long and equilibrated trajectory, to give the scalar uniaxial order
parameter as:

〈P2〉 = 〈P2(t)〉 = −2〈λ0(t)〉. (4)

with the angular brackets indicating a time average over the trajectory. An
alternative way of determining the order parameters employs the instanta-
neous director at time t, n(t) for computing the Euler angle βi(t) between
the phase director and the reference axis of molecule i. This allows the cal-
culation of the overall average of any function of βi, and in particular, the

9



second and fourth rank Legendre polynomials, yielding the corresponding
order parameters:

〈P2〉 = 〈
N∑
i=1

(3 cos2 βi(t)− 1)〉/(2N), (5)

〈P4〉 = 〈
N∑
i=1

(35 cos4 βi(t)− 30 cos2 βi(t) + 3)〉/(8N). (6)

where cos βi(t) = n(t)·ui(t).We can now use these order parameters for a first
assessment of the phase transitions observed in Figure 1. In Figure 3 we see
that the highest temperature transition is a isotropic-ordered phase change.
We shall see later that this higher temperature phase is devoid of positional
order, confirming that the phase is nematic. Estimating TNI from the simula-
tions is not trivial, because of the finite and relatively small sample size that
gives a non vanishing residual order even in the isotropic phase (&

√
N ) and

the spacing between the temperature of our runs. Considering the highest
temperature at which the inertial order parameter 〈P2〉 is larger than 0.15,
715≤ TNI <720 K. Some refinement can be obtained examining not only the
average value of the order, but also the skewness of the histogram of all the
instantaneous values of 〈P2〉 observed during the simulation. The skewness
of the order parameter is expected to become significant approaching a first
order transition like the NI one [25,43] and to change of sign crossing it, and
as we see in the plot of skewness vs temperature reported in Figure S4, in
our case this occurs around T=715 K, that we then use as our estimate of
TNI . Comparing with experiment we see that our simulations overestimate
TNI by ≈17 K (<3%). However it should be said that even the various ex-
perimental results differ from one another by even 5-7 degrees (see Table 1).
In Figure 4 we show the simulated 〈P2〉 and 〈P4〉 vs reduced temperature.
and compare them with available sets of experimental data for 〈P2〉 while,
as far as we are aware, experimental results are not yet available for 〈P4〉.
We notice that the agreement between simulation and experiment for 〈P2〉
is good, both with the deuterium NMR data of Dingemans et al. [17], the
diamagnetic susceptivity anisotropy measurements of Sherrel and Crellin [18]
and the recent birifringence data of Kuipers et al. [42]. The wide angle X-
ray data of [42] are more at variance both with our simulations and other
experimental results.
Fitting our 〈P2〉 results in the nematic phase to the empirical Haller equa-
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Table 1: Quinquephenyl phase transitions as reported by various authors.
Cr, S, N, I are short for crystal, smectic, nematic, isotropic. In brackets our
proposed assignment for some previously observed transitions. The direction
of the arrows distinguishes between heating and cooling runs.

Author Phase sequence

Rodrigues et al. [23] Cr
642K−−−→ SXA

663K−−−→ N
698K−−−→ I

Kuiper et al. [42] Cr(SXA ?)
662K←−−− S(SA?)

663K←−−− N
698K←−−− I

Dingemans et al. [17] Cr1
623K←→ Cr2(SXA ?)

663K←→ N
700K←→ I

Irvine et al. [19] Cr1(SXA ?)
657K←−−− Cr2(SA?)

661K←−−− N
691K←−−− I

Irvine et al. [19] Cr(SXA ?)
663K−−−→ N

698K−−−→ I

Kuiper et al. [31] Cr(SXA ?)
658K←−−− N

692K←−−− I

Kuiper et al. [31] Cr(SXA ?)
666K−−−→ N

699K−−−→ I

present work Cr
617K←−−− SXA

642K←−−− SA
657K←−−− N

715K←−−− I

tion [49]:
〈P2〉 = (1− 〈P2〉iso)(1− T/T †NI)

βc + 〈P2〉iso, (7)

with T †NI=716 K, a pseudocritical temperature slightly above the first order
transition TNI and 〈P2〉iso=0.12, gives a value of the pseudo–critical expo-
nent βc=0.18. This compares with those simulated for 5CB: βc=0.226 ±
0.04 (for which the experimental values reported range from βc=0.172 [50]
to 0.19 [51] up to the value βc=0.25 [52]. In Figure 5 we show a plot of 〈P4〉
vs 〈P2〉, where we see the simulated results compared with the Maier-Saupe
expected curve and the simple approximation 〈P4〉 = (5/7)〈P2〉2 [43] derived
by eliminating the effective potential strength a2 from the expressions in
Equation 1 for L=2 and L=4, to obtain an expansion of 〈P4〉 in powers of
〈P2〉. The good agreement of the three curves essentially indicates that the
orientational distribution has at each temperature a second rank exponential
character, even if the temperature dependence of the effective field strength
a2 is not simply proportional to 〈P2〉 as in Maier-Saupe mean field theory. We
notice that this should also apply to Onsager theories, since it is well known
that the more complex expression for that can also be well represented by
expanding the density functional form in its exponent in a Legendre poly-
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nomial series truncated at the second term [5]. The other curve comes from
the simple approximations 〈P4〉 = 〈P2〉(10/3) continuum theory of disordering
by fluctuations, which appears instead not to correspond to the behaviour
of this realistic system, similarly to what was already found for the simple
Lebwohl-Lasher lattice model [43].

2.2.3 Smectic phases and positional order

As already mentioned we find, when cooling down from the nematic, that
other orientationally ordered phases appear. It is apparent from the snap-
shots in Figure 2 that these have a periodic structure, with molecules essen-
tially orthogonal to the layers, suggesting that they could be smectics (thus,
e.g. SA or SB) or crystalline. Various transitions have indeed been observed
experimentally, but the situation is rather confusing (see Table 1). To char-
acterize the phases we start by calculating their positional order parameters
τn [26]. These represent the coefficients in the orthogonal expansion in a
Fourier basis of the probability P (z) of finding a molecule at a position z
along the normal to the layers:

P(z) =
1

d
+

2

d

∞∑
n=1

τn cos(2πnz/d) (8)

where d is the layer spacing and we have assumed the origin of the director
frame to be such that P(z) = P(−z). τn, the nth positional order parameter,
is defined as:

τn =

∫ d

0

P(z) cos(2πnz/d) dz = 〈cos(2πnz/d)〉, n ≥ 1 (9)

In Figure 6 we show the first three positional order parameters obtained
from our MD trajectories. Various methods to calculate τn and a robust
procedure for their practical evaluation have been described in [53]. Here we
have obtained the first few τn from a fit of the translationally invariant two
particle density autocorrelation g(z12), obtained from the number density of
molecules at distance z12 scaled by the average density.

g(z12) = 1 + 2
∞∑
n=1

(τn)2 cos(2πnz12/d) (10)
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Figure 6: Typical oscillatory behaviour in the crystal and smectic phases of
the two-particle density correlation function g(z12) (left) and corresponding
calculated positional parameters for P5 as a function of temperature (right).

The phase immediately below the nematic appears to be smectic with the
first smectic order parameter τ1 growing very quickly as T decreases below the
nematic temperature range (Figure 6), in analogy to what observed for sex-
ithiophene [26] but in contrast with other systems where it is instead rather
constant in a similarly narrow temperature range [53]. The two low temper-
ature phases are crystalline or smectic with high orientational (〈P2〉 >0.9)
and positional order. We notice also significant jumps in τ2, τ3 at the low
temperature phase changes, showing a stiffening of the layers. The fit gives
the simulated layer spacing as d =24.1-24.4 Å, similar to the value of almost
25 Å measured by Kuiper at al. [54] from the position of the X-Ray small
angle diffuse reflection in nematic phase, and to the length of P5, indicating
a non interdigitated organization, differently from, e.g. the case of 8CB [53].

2.3 Spatial and space-orientational distributions

We now take a closer look to the local structure of the phases, using first the
radial distribution function:

g0(r) =
1

4πr2ρ
〈δ(r − rij)〉ij, (11)

where rij is the distance vector between the reference centre on molecule i and
the equivalent centre on molecule j and ρ is the number density. In Figure
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Figure 7: P5 radial distribution for centre of mass and inset of a close up
across the NI transition (left) and radial distribution for centre of a phenyl
ring with that of another phenyl ring (right).

7 (left) we show the radial distributions g0(r) of P5 in the nematic phase,
obtained using as reference center the molecular center of mass. We see that
g0(r) is liquid–like for the isotropic and nematic phase: no sharp peaks are
present at medium and long range and g0 quickly reaches the asymptotic
value of 1, as expected for a fluid phase. We also notice that the isotropic
and nematic correlations are quite similar even for temperatures well above
the clearing temperature (see inset of Figure 7). In particular the first peak,
shows the similarity in the local, short range, structure, hypothesized as the
origin of the weak entropy change for the nematic-isotropic transition [13].
The radial distribution function also confirms the high structuring present
in the two low temperature phases the crystalline and the lower tempearture
smectic, that we shall tentatively call SXA , and the quantitative difference
between those two. The first neighbour peak is located at 5-6 Å, rather than
at ≈ 3.5 Å, as would be typically expected for face to face π − π packing,
corresponding to a local packing that is always somewhat skewed. This
closest approach distance can be successfully compared with the value of 5.0
Å in the experimental crystal structure at room temperature. [27]. We also
see that the our crystal phase has a local hexagonal structure, as shown by
the splitting of the second peak of g(r) [55] and the layer snapshots in Figure
8, while this feature is missing in the two upright smectic phases, that we
can then tentatively classify as SA, rather than SB. We introduce next the
pair distribution Gα

2 (r), which gives the quadrupolar ordering between two
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Figure 8: P5 wireframe top view of a layer in the crystal at 610 K (left), SXA
at 630 K and SA phases at 650 K. The spheres represent the centers of mass.
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Figure 9: Gα
2 (r) angular correlations for phenyl rings axes: along the P5 para

direction (α=z, left) or perpendicular to it (α=x, right).

molecules i, j positioned at distance r,

Gα
2 (r) = 〈δ(r − rij)

[
3

2
(uαi · uαj )2 − 1

2

]
〉ij/〈δ(r − rij)〉, (12)

where uαi is a reference unit vector in phenyl ring i, here along the P5 para
axis (α=z) or perpendicular to it (α=x), and r is the distance between the
reference centres on two different molecules. For P5 or oligophenyls in gen-
eral, the relative orientation of the phenyl rings is of great importance as
face to face orientation should favor the possibility of charge hopping from
one molecule to the other, and thus improving its semiconducting properties.
The correlation between two molecules is expected to be anisotropic and to
vary when their separation vector rij is at different angles β with respect to
the director. This can be examined with the anisotropic radial distribution

15



function, g(rij, cos βij):

g(rij, cos βij) =
1

4πr2ρ
〈δ(r − rij)δ(cos β − cos βrij)〉 . (13)

In practice, g(r) of Equation 11 is calculated and normalized separately for
discrete values of cos βrij , where βrij is the angle between the intermolecular
vector rij and the phase director. In Figure 10 we report contour maps
of g(rij, cos βij) showing the molecular packing in various directions with
respect to the director at various temperatures. We show a total of six cases
and, to highlight significant differences, we choose a different scale for color
coding the intensity of g for the three higher temperatures (0-2) and for the
three lower ones (0-10). Starting from the isotropic phase just above the
transition at 720 K, where the director is not really meaningful, we see that
the distribution is essentially uniform and only shows short range order at
rij ≈ 5 Å while these local domains have nearly random orientation with
respect to the pseudo-director. This local clustering is very similar to that
at 710 K, just below the N-I transition. We see instead that the structure
is very different, as we go through the various phase changes. The smectic
A phase at 650K shows a pronounced correlation in the direction transversal
to the director and, starting at ≈20 Å, with molecules of the neighbour
layer. Cooling to 630 K shows an increase of the ordered region parallel to
the director (cos βrij '0), but also the appearance of a second one with the
intermolecular vector at ≈400 from the first. After a further cooling and
upon reaching the crystal a straightening seems to occur, with local and
global ordering direction coinciding.

2.4 Dynamics

We still have to consider if the low temperature layered phases are smectic
or crystalline, and examining their fluidity is useful in this respect. We have
then calculated the translational diffusion coefficients along the director and
perpendicular to it from the mean square displacements in the respective di-
rections, using the classical Einstein formula (see, e.g. [53]). We see from the
results in Figure 11 that the three high temperature phases are clearly fluid
with translational diffusion coefficient of the order of 10−9 m2/s, comparable
with those of other nematics [56], of sexithiophene in the same high temper-
ature range [26]. We see that both in the nematic and the smectic SA phases
the diffusion along the director is faster than the one perpendicular to it,
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Figure 10: The distribution function g(rij, cos βij) (equation 13) for P5 at a
series of temperatures. βij is the angle between the director and the inter-
particle vector rij.
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Figure 11: Arrhenius plot for the simulated translational diffusion coefficients
of a P5 molecule moving parallel and perpendicular to the director.

again similarly to other systems where the nematic phase precedes the smec-
tic one and the transition is of very weakly first or second order [26,53], or at
temperatures close to the nematic-smectic transition in others [57]. This is
somewhat surprising as the molecular flexibility is believed to play an impor-
tant favorable role in interlayer diffusion [58], and hard spherocylinders with
low aspect ratio show the opposite behavior with respect to P5 [59]. The
translational diffusion becomes instead easier within the layers than across
them in the low temperature smectic phase SXA , a feature typical of smectic
phases with high interlayer energy barriers, such as tilted ones [57, 60]. In
any case SXA retains some fluidity in both directions, qualifying it as a highly
ordered smectic phase, rather than a conformationally disordered [21] crys-
tal. Conversely in the Cr phase dynamics is slowed down by three orders of
magnitude compared to the nematic and a (very slow) diffusion is possible
almost only intralayer (the values of D|| ≈ 10−12 m2/s reported correspond
to an average root displacement of a few Å on the simulated timescale). As a
matter of fact, this diffusion is compatible with the absence of spatial corre-
lation between the layers both in SXA and in Cr at the temperatures we have
studied (cf corresponding rdf in Figure S6). Apart from basic similarity, it
is clear that we do not aim to reproduce the room temperature crystal poly-
morph by a cooling down process from the isotropic, a notoriously nearly
impossible task [61,62].
As for rotational diffusion, we have characterized it on the basis of the time-
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Figure 12: Arrhenius plot for the correlation times for rotation around the
long axis (spinning) and of the long axis itself (tumbling) as a function of
temperature.

autocorrelation functions 〈u(0) ·u(t)〉 where u denotes either the short or the
long molecular axis of P5. These functions show a slow monotonic decay, and
we arbitrarily estimated the corresponding characteristic time as the value
at which 〈u(0) · u(t)〉=1/e. We see from Figure 12 that rotation around
the long axis is fast (correlation times of the order of picoseconds) all the
way from isotropic to smectic phases. Long axis reorientation starts instead
from being two orders of magnitude slower than that of the short one in the
isotropic phase, with a progressive increase of tumbling time, that becomes
longer than 10 ns in the SXA phase and beyond our time window in the Cr
phase.

2.4.1 Molecular Shape

The molecular shape, expressed by the aspect ratios between the molecu-
lar dimensions is a most important parameter in understanding LC phase
behaviour, such as the onset of nematic and smectic uniaxial and biaxial
phases, and the change in transition temperatures induced by small chemical
modifications. Most of these effects have been widely studied in recent years
with the help of hard [63] and attractive-repulsive rigid models [64]. More
recently some of us proposed the use of deformable molecular models [65] to
bridge the gap between a description that assumes mesogenic molecules to
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be completely rigid or fully flexible. Among the shape effects on hard sphe-
rocylinders, a progressive increase of the length to breadth ratio is known
to induce the nematic phase, widening it, and finally stabilizing a smectic
phase [14]. To be more quantitative we consider, like in [25,47], the minimal
rectangular box containing the molecule rotated in its inertial frame and its
side lengths lx, ly, lz as molecular size indicators. This molecule in a box ap-
proach provides an upper limit to the actual molecular dimensions, that on
the other hand are difficult to define unambiguously for a non perfectly rigid
molecule. In Figure 13 we show the temperature dependence of the aver-
age aspect ratio 〈L/B〉 obtained from molecular length L = lz and molecular
breadth B = (lx+ly)/2, respectively. The histogram of the aspect ratio is not
a sharp peak, independent of temperature, but rather we see a decrease of the
average aspect ratio with temperature indicating non rigidity of the molecule.
The non rigidity is also shown by the relatively broad distribution of L/B at
various temperatures (Figure 13, right), somewhat similar to that of other
more flexible mesogens [25, 66] and to sexithiophene [26]. The sources of
the conformation changes leading to shape polydispersity in P5 appear to be
quite different and involving mainly two mechanisms. One involves changes
in the effective breadth of the molecule due to internal torsions while the
length stays constant, with the phenyl-phenyl bonds parallel to the long axis
of the molecules. In this sense the major changes with temperature occur
on the short axis length (see Figure S8) yielding an intrinsic polydispersity
which arises from the torsional degrees of freedom. The other mechanism is
the presence of some overall bending of the molecule. As also shown by van
der Schoot with a generalization of Onsager theory [67], allowing for even a
small molecular flexibility stabilizes the nematic phase. Indeed, bending is
actually a feature of P5 LC phases, as shown by the probability distributions
of the cosine of the angle between the vectors joining the central phenyl with
the two ends of the molecule, reported in Figure 14. The bending is also
consistent with experimental measurements of persistence lengths of about
10-20 nm for rigid poly-para phenylene polymers in solution, values one order
of magnitude larger of those expected for flexible polymers, but nevertheless
quite small for a truly rigid one. [68,69]. On the basis of simulation results
for mono and polydisperse hard spherocylinders, this intrinsic polydispersity
goes in the direction of explaining the wide nematic phase of P5, which is
absent for aspect ratios lower than 4.7 for monodisperse hard spherocylin-
der systems [14] (Figure 15), while it is stabilized at the expenses of the
smectic phase when flexibility [67] or polydispersity increases [70]. Actually
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Figure 13: Left: distribution of the aspect ratio L/B as a function of temper-
ature. Right: average aspect ratio, standard deviation and polydispersity.

polydispersity is also indicated as an important factor for obtaining smectic
and nematic phases for colloidal systems with relatively low aspect ratio ( '
4) [71]. Having said that, the other possible key element is the presence of
anisotropic attractive forces for P5, missing in the hard particle models. We
notice that the intervention of a purely scalar attractive dispersion force, as
hypothesized in the so called van der Waals models [72,73], goes in the right
direction but still gives an overestimate of the order at the NI transition.

3 Conclusions

We have performed a detailed fully atomistic computer simulation of the
molecular organization and phase transitions for p-quinquephenyl, a proto-
type rodlike mesogen. We have put forward a force field that can reproduce,
upon cooling down from the isotropic phase, the transition temperature to
nematic with a deviation of ≈17 K (<3%) from the experimental value. We
also obtain two orthogonal smectic phases, with different anisotropy in the
translational mobility of the molecules. In the higher temperature smectic
phase molecules move more easily across the layers than in the layers, while
the opposite is true in the lower temperature smectic one. It would seem that
a combination of anisotropic dispersive and repulsive interactions is essential
to give a liquid crystal, rather than just crystal phases for this relatively short
aspect ratios and moreover that polydispersity in the aspect ratio, even for
an apparently rigid molecule like P5 is important to yield a nematic, rather
than a smectic. For P5 the polydispersity in shape and aspect ratio is pro-
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vided by internal torsions and bending. We have validated our results against
existing data for transition temperatures and second rank order parameter
as a function of temperature, but we have also predicted fourth rank orien-
tational order parameter as well as positional order and diffusion coefficients
that we hope will provide a stimulus for much needed further experimental
work.
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Table of content

Text

The nematic–isotropic and the other transition temperatures of p-quinquephenyl
have been determined using atomistic molecular dynamics simulations. Var-
ious orientational and positional order parameters have been determined
and compared with experimental data where available. The rigidity of p-
quinquephenyl, often taken for granted is assessed, finding an aspect ratio
changing with temperature and its distribution relatively broad due to inter-
nal torsion and bending.
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Supporting Information

1 Parameterization of the force field

Taking into account the symmetry of para-quinquephenyl (P5), only two torsion
angles along the para axis are to be reparametrized for obtaining an accurate
force field, namely the outer torsion φ1 and the inner torsion φ2 (Figure S1).
Similarly to other studies aiming at the calculations of biphenyl torsion poten-
tial [1], a batch of methods has been used ranging from the semi-empirical AM1,
through hybrid DFT B3LYP and finally to MP2. Different basis sets with in-
creasing size were used in order to rely as accurately as possible on minimum
energy position as well as barrier heights. All the calculations were performed
with Gaussian09 software [2].
From Figure S1, we can see that all the quantum-chemical methods (except
B3LYP with the cc-pVTZ basis) converge to the same energy minimum around
40 degrees with a larger energy barrier at 0 degree than at 90 degrees for both
torsion angles. We notice that the energy barriers at 0 and 90 degrees are
quite similar with differences of the order of 0.2 kcal/mol. Interestingly, MP2
optimization and MP2 single point on B3LYP cc-pVTZ geometries give quite
similar results, highlighting the predominance of the quantum-chemical method
employed for calculating the energy over the one used for the geometries. Over-
all the results obtained in this study are in quite good agreement with previous
calculations performed on shorter oligophenyls [3].

Prior to running molecular dynamics simulations, the torsional contribution

Figure S1: Quantum chemistry energy profiles for quinquephenyl dihedral an-
gles Torsional potential for the outer torsion angle φ1 and the inner torsion
angle φ2 of quinquephenyl, as shown in the chemical skectch on the left. The
key MP2 OPT corresponds to MP2//CC-pVDZ calculations, while MP2 SP to
B3LYP/cc-pVTZ/MP2/cc-pVDZ.

to the force field calculations were determined with the Adaptive Biasing Force
(ABF) method as implemented in NAMD [4]. The best fit between ABF cal-
culations and quantum-chemical calculations was then introduced in the force
field definition. At the same time, the atomic charges were calculated using the
ESP scheme [5] on the MP2//cc-pVDZ charge density, and symmetrized them
with respect to the inversion center and introduced in the force field.
Preliminary Molecular Dynamics simulations on 200 molecules samples have
been performed in order to assess the capability of the different parameteriza-
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Figure S2: Density as a function of εC for an orthorhombic sample of 200
molecules at 660 K using the AMBER values for the remaining Lennard-Jones
parameters (rC=1.908 Å; εH=0.015 kcal/mol, rH=1.459 Å [7])

tions for the Lennard Jones parameters reported in literature in reproducing the
correct experimental density and transition temperatures. We instead kept the
atomic charges fixed at their ab initio values and used as reference density the
one of the nematic at the transition between crystal and liquid–crystalline (0.93
g/cm3 at 660 K) [6]. The AMBER parameterization [7] (εC=0.086 kcal/mol,
rC=1.908 Å; εH=0.015 kcal/mol, rH=1.459 Å) was our first natural choice
since it has been used often in the Bologna laboratory, often obtaining a good
agreement with experiments when torsional potential has been modified at a
quantum-chemical level in addition with the introduction of ESP charges, see for
instance reference [8]. However the density obtained with the AMBER param-
eterization is disappointingly lower than the experimental one (0.78 g/cm3 at
660 K) also if at that temperature the sample is in the nematic phase; therefore
we attempted also another popular force field, CHARMM (εC=0.07 kcal/mol,
rC=1.9924 Å; εH=0.022 kcal/mol, rH=1.32 Å). The results with CHARMM
were even worse: no stable condensed phase was obtained at atmospheric pres-
sure in the simulated temperature range 600-720 K. In a third attempt, we
recurred to the parameterization proposed by Sherrill and coworkers (εC=0.115
kcal/mol, rC=1.922 Å; εH=0.011 kcal/mol, rH=1.23 Å) [9] on the basis of high
level, correlated calculations carried out for benzene dimers. This parameter
set was supposed to perform better than existing ones, at least in reproducing
the ab initio data: “The new parameters lead to modest overbinding near equi-
librium for the sandwich configuration, but they improve significantly the under
binding of the empirical force fields for the T-shaped configuration.” [9] However
our tests in condensed phase revealed this overbinding is detrimental for the
liquid phase of quinquephenyl, as we obtained only solid phases and too high
densities ranging from 1.07 to 1.21 g/cm3 in the 600-720 K temperature range.
From these tests it cleary emerged the key importance of tuning appropriately
εC , together with the relatively superior performance of the AMBER force
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Table S1: The different parameterization were furtherly tested also for super-
cells built by replicated the experimental crystal structure. Here we report
density ρ and crystal cell parameters of quinquephenyl as obtained from X-ray
experiments [10] and simulated for a 4 x 16 x 11 supercell.

T (K) ρ (g/cm3) a (Å) b (Å) c (Å) β (◦)

exp 283-303 1.29 22.056 5.581 8.07 97.9

εC=0.105 300 1.23 21.98 5.28 8.89 90[∗]

εC=0.105 400 1.21 22.02 5.33 8.96 90[∗]

εC=0.105 500 1.18 22.19 5.41 8.98 90[∗]

εC=0.105 500 1.14 22.32 5.59 9.08 90[∗]

εC=0.105 300 1.24 22.46 5.29 8.73 97.4
AMBER-OPLS 300 1.22 22.47 5.31 8.79 97.4
CHARMM 300 1.24 22.44 5.51 8.37 97.8
Sherrill 300 1.38 22.17 5.41 7.73 98.3

[*] β fixed to 90 degrees. α and γ are always fixed at 90 degrees.

field with respect to CHARMM and Sherrill’s. On this basis, in a second se-
ries of simulations carried out at 660 K, we systematically increased εC from
0.086 kcal/mol, the original value in the AMBER parameterization, up to 0.11
kcal/mol (so somehow gradually transforming AMBER carbon in Sherrill’s car-
bon), while leaving the other Lennard Jones parameters unchanged. As shown
in figure S2, it turned out that εc=0.105 kcal/mol gave the density closest to the
experimental value, and we employed this value for the simulations described in
the article.
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Figure S3: Potential energy curve for two parallel P5 molecules displaced along
their principal inertia axes, calculated with εC=0.105 kcal/mol at the equilib-
rium geometry in gas phase (right). In the legend, the maximum interaction
energies and the positions of the maxima are indicated. The positions provide
also an estimation of the molecular dimensions and of the aspect ratio (in this
case, a = 2 · 25/(6.2 + 3.7) ≈ 5.06).
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2 Additional Figures
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3
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parameter distribution in the temperature range of the nematic-isotropic tran-
sition.
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Figure S5: Effective torsional energy profile for the external (φ1 and central (φ2)
phenyl-phenyl rotation for selected temperatures corresponding to the different
phases.
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Figure S6: Radial distribution function of the intermolecular distance projected
on the plane perpendicular to the phase director. The peaks at r⊥ < 5 Å are due
to interlayer correlations and appear only in the crystal phase, both in cooling
and more pronouncedly in heating runs.
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Figure S7: Smectic or crystal layer spacing as a function of temperature for the
1000-molecules sample. Vertical light blue lines indicate the measured transition
temperatures.
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Figure S8: Molecular dimensions along the principal inertial axes as a function
of temperature.

Supporting Information page:6



 340

 350

 360

 370

 380

 605  610  615  620  625  630

H
 /

  
k
J
 m

o
l-1

T / K

MD

Cr

SA
X

 390

 400

 410

 420

 430

 440

 640  650  660  670  680  690

H
 /

  
k
J
 m

o
l-1

T / K

MD

SA
X

N

 450

 460

 470

 480

 700  705  710  715  720  725  730

H
 /

  
k
J
 m

o
l-1

T / K

MD

N

I

Figure S9: Phase enthalpies interpolated with linear least square fits of the
enthalpy in each of the phases. The phase transition enthalpy is estimated as
the difference between the two relevant straight lines at the transition temper-
ature (vertical line): from top to bottom, Cr-SX

A (∆H=-8.4 kJ·mol−1, ∆S=13.6
J·mol−1·K−1 at T=617.5 K), SX

A -N (∆H -5.2 kJ·mol−1, ∆S 8.0 J·mol−1·K−1 at
T=657.5 K), N-I (∆H=-2.4 kJ·mol−1, ∆S=3.4 J·mol−1·K−1 at T=715 K). The
SA phase was neglected as apparently the transitions SA-N and SX

A -SA are of
second order.
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3 Parameter and topology files in CHARMM
format

3.1 Topology file

AUTOgenerate ANGLES DIHEDRAL

MASS 1 CA 12.0110 CA

MASS 2 CB 12.0110 CB

MASS 3 CC 12.0110 CC

MASS 4 HA 1.0079 HA

RESIDUE QPH 0.0

*

* H10 H9 H21 H20 H31 H30 H41 H40 H52 H51

* C5 - C4 C17-C16 C27-C26 C37-C36 C47-C46

* / \ / \ / \ / \ / \

* H11- C6 C3 - C12 C15 - C22 C25 - C32 C35 - C42 C45-H50

* \ / \ / \ / \ / \ /

* C1 - C2 C13-C14 C23-C24 C33-C34 C43-C44

* H7 H8 H18 H19 H28 H29 H38 H39 H48 H49

*

group

atom C1 CA -0.130708

atom C2 CA -0.153622

atom C3 CB 0.073512

atom C4 CA -0.153622

atom C5 CA -0.130708

atom C6 CA -0.093951

atom H7 HA 0.120684

atom H8 HA 0.121869

atom H9 HA 0.121869

atom H10 HA 0.120684

atom H11 HA 0.111224

group

atom C12 CB 0.054556

atom C13 CA -0.153306

atom C14 CA -0.164759

atom C15 CC 0.080841

atom C16 CA -0.164759

atom C17 CA -0.153306

atom H18 HA 0.124556

atom H19 HA 0.125688

atom H20 HA 0.125688

atom H21 HA 0.124556
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group

atom C22 CC 0.054336

atom C23 CA -0.154476

atom C24 CA -0.154476

atom C25 CC 0.054336

atom C26 CA -0.154476

atom C27 CA -0.154476

atom H28 HA 0.123814

atom H29 HA 0.123814

atom H30 HA 0.123814

atom H31 HA 0.123814

group

atom C32 CC 0.080841

atom C33 CA -0.164759

atom C34 CA -0.153306

atom C35 CB 0.054556

atom C36 CA -0.153306

atom C37 CA -0.164759

atom H38 HA 0.125688

atom H39 HA 0.124556

atom H40 HA 0.124556

atom H41 HA 0.125688

group

atom C42 CB 0.073512

atom C43 CA -0.153622

atom C44 CA -0.130708

atom C45 CA -0.093951

atom C46 CA -0.130708

atom C47 CA -0.153622

atom H48 HA 0.121869

atom H49 HA 0.120684

atom H50 HA 0.111224

atom H51 HA 0.120684

atom H52 HA 0.121869

bond C1 C2 C1 C6 C1 H7 C2 C3 C2 H8

bond C3 C4 C3 C12 C4 C5 C4 H9 C5 C6

bond C5 H10 C6 H11 C12 C13 C12 C17 C13 C14

bond C13 H18 C14 C15 C14 H19 C15 C16 C15 C22

bond C16 C17 C16 H20 C17 H21 C22 C23 C22 C27

bond C23 C24 C23 H28 C24 C25 C24 H29 C25 C26

bond C25 C32 C26 C27 C26 H30 C27 H31 C32 C33

bond C32 C37 C33 C34 C33 H38 C34 C35 C34 H39

bond C35 C36 C35 C42 C36 C37 C36 H40 C37 H41

bond C42 C43 C42 C47 C43 C44 C43 H48 C44 C45

bond C44 H49 C45 C46 C45 H50 C46 C47 C46 H51

bond C47 H52

end
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3.2 Parameter file

BOND

CA CA 478.40 1.400

CA HA 344.30 1.100

CB CB 346.50 1.490

CC CC 346.50 1.480

CA CB 466.10 1.410

CA CC 466.10 1.410

ANGLE

CA CA CA 67.20 120.00

CA CA HA 48.50 120.00

CA CA CB 67.20 121.17

CA CB CA 67.10 118.65

CA CC CA 67.10 118.23

CA CB CB 67.20 121.14

CB CA HA 48.50 120.00

CC CA CA 67.20 121.00

CC CC CA 67.20 121.00

CC CA HA 67.20 119.40

DIHEDRAL

X CA CA X 3.6250 2 180.

X CB CB X -0.7048 2 0.

X CB CB X 0.0851 4 0.

X CB CB X -0.0111 6 0.

X CB CB X -0.0272 8 0.

X CB CB X -0.0113 10 0.

X CC CC X -0.7859 2 0.

X CC CC X 0.0598 4 0.

X CC CC X -0.0182 6 0.

X CC CC X -0.0284 8 0.

X CC CC X -0.0105 10 0.

X CA CB X 3.6250 2 180.

X CA CC X 3.6250 2 180.

NONBONDED

CA 0. -.1050 1.9080 0. -.05250 1.9080

HA 0. -.0150 1.4590 0. -.00750 1.4590

CB 0. -.1050 1.9080 0. -.05250 1.9080

CC 0. -.1050 1.9080 0. -.05250 1.9080

END
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