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We have investigated the stacking of model
bowlic mesogens, and the nematic and columnar
liquid crystal phases they form upon cooling–
down from an isotropic liquid. Starting from an
attractive–repulsive interaction obtained gener-
alising the Gay–Berne pair potential to bowlic
shapes, we have performed extensive off–lattice
Monte Carlo NPT computer simulations of sam-
ples of various sizes: N = 1024, 8192, and 32000
particles. We have examined in particular the
length of the polar domains formed and their
polydispersity, and characterised in detail the
structure of the packing defects terminating the
columns.

1 Introduction

The self assembly of suitable molecules in or-
dered structures is a powerful approach toward
building components and devices for organic
electronics [1]. In particular flat shape (“dis-
cotic”) mesogens have been employed to build
columnar stacks for applications in organic tran-
sistors and photovoltaics [2] exploiting their
strongly anisotropic transport properties. Since
the discovery of the first discotics, some thirty
years ago [3], a variety of flat mesogens have
been prepared [4, 2], particularly in the effort
of improving their electronic properties, e.g. to-

wards optimal conductivity.

Very interesting features of these systems are
that molecular columns are formed sponta-
neously, just by changing temperature or by
solvent evaporation, like in spin coating proce-
dures, and that these structures can self anneal.
Indeed, being to some extent fluids, columnar
phases should avoid, e.g., the problem of grain
boundaries which vexes the use of crystalline
organic materials. Unfortunately, the discotic
columns also present irregularities, in particular
the molecular stacking in columns is interrupted
by defects, e.g. discs slipping from the columns,
or swallow tail doubling of the columns. When
choosing mesogens that can stack an important
problem is thus that of controlling the size of
these columns. Using concave, bowl–shaped
rather than flat shaped mesogens should intu-
itively be expected to improve stacking. In-
deed, the idea of using bowl–shaped molecules
has been around for quite some time, particu-
larly to try and build achiral ferroelectric liquid
crystal materials [5, 6, 7, 8, 9]. In that case,
the expectation is that if each bowlic molecule
has an axial dipole, they should pile up head to
tail yielding a macroscopic column dipole. The
formation of an hexagonal columnar phase, as
often found in columnar discotics would ensure
an overall ferroelectric order [9, 10]. A variety
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of bowlic mesogens have been put forward, e.g.
based on tribenzocyclononenes [11], metallor-
ganic compounds [5, 7], cyclotryveratrilene [12],
calix[4]arenes [13, 14], and C60 fullerene derived
molecules [15]. In the latter case the shape is
somewhat different but the C60 apex of each of
these molecules fits perfectly into the cavity of
a neighbouring one.

Despite the flourishing of synthetic work and
of the attendant characterisation activity, mod-
elling and simulation studies have been very
limited. A detailed atomistic simulation of
the type that has recently been successfully
applied to describing low molar mass nemat-
ics [16, 17, 18] is clearly currently unfeasible for
molecules as complicated as the bowlic meso-
gens mentioned above. At the other extreme,
lattice models with a combination of polar and
quadrupolar symmetry have been simulated [19]
and polar regions of the phase diagram have
been described. Essentially the same poten-
tial has also been studied with Mean Field The-
ory [20]. However, a strong limitation of these
treatments is the absence of anisotropic repul-
sive shape effects, that are key to the piling of
bowls. Very recently a coarse–grained soft–core
model based on approximating complex coni-
cal fullerene mesogens with a set of cubic build-
ing blocks with rotations and translations re-
stricted to a lattice has been successfully put
forward [21]. The more realistic and very ef-
fective off–lattice molecular resolution type ap-
proach, where a complex molecule is replaced
by a simple object like an ellipsoid or a sphero-
cylinders [22, 23, 17], interacting via attractive–
repulsive pair potentials, has extensively been
employed for discotics, but cannot be applied,
as such, to bowlic particles. On the other hand
we have shown that particles of other shapes,
e.g. tapered ones [24, 25], can be effectively
studied by suitably approximating their contact
distance [26] as a function of the relative posi-
tion and of the orientation of the interacting
particles.

Here we plan to develop a simple molecular
model for bowl–shaped molecules and to per-
form a series of MC simulations of their phase
behaviour. Since there is very little theoretical
modelling for these type of systems we believe

that such a study is essential in establishing a
relation between molecular features and colum-
nar organisation, clarifying the role of shape and
attraction in bowlic systems. As a first objec-
tive we plan to examine the possibility of get-
ting long columnar stacks as opposed to just
short domains without long range correlation.
We also wish to see how the columns are termi-
nated, and the nature of the resulting structural
defects.

2 Modelling

We represent uniaxial bowl–shaped molecules
using a combination of attractive and repulsive
pair interactions with the help of a methodology
we have already employed in Ref. [24], based
on a generalisation of the Gay–Berne (GB) po-
tential [27, 28]. This off–lattice potential is
the de–facto standard model for the simula-
tion at molecular resolution of a variety of liq-
uid crystals [22, 23, 17], and has the advantage
of simplicity since it consists of only one site
per molecule. Here we are particularly inter-
ested in the effect of the particle shape on the
macroscopic properties, and we shall model the
repulsive part of the potential in terms of the
anisotropic contact distance. To this effect we
represent the bowl conical particles shape as the
solid of rotation from the 2π revolution of a two–
dimensional cross–section (see Fig. A–1). This
profile has in turn been obtained by joining four
parametric Bezier curves [29] defined in terms
of the control points listed in Table A–1. As in
Ref. [26, 24], we expand the pair contact dis-
tance computed numerically (see Fig. 1 for a
schematic description of our methodology) as

σ(u1,u2,ur)=∑
L1L2L3

σL1L2L3S
L1L2L3 ∗(u1,u2,ur) (1)

where σL1,L2,L3 are the expansion coefficients,
and the SL1,L2,L3 are a suitable set of rotational
invariant orthogonal functions [30, 31, 32] for
the orientations u1, u2 of the two molecules
(given as unit vectors), and that ur of the inter-
molecular vector r12 = r12ur.
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Here we consider bowl–shaped particles (see
Fig. A–1) of width w = 0.75 σ0, and length
l = 0.675 σ0, with σ0 the unit of distance. Us-
ing these dimensions the vertical distance h be-
tween base and molecular frame (see Fig. A–
1) is h = 0.3 σ0. In Table A–2 we list the
49 expansion coefficients σL1,L2,L3 used to ap-
proximate the pair contact distance for a pair
of bowlic particles. The sections of the contact
distance are well reproduced by the approximat-
ing expansion with an overall relative error of a
few percent units (see Fig. 2). The contact dis-
tance expansion σ(u1,u2,ur) accounts for shape
anisotropy in the generalised Gay–Berne poten-
tial

U(u1,u2, r12) = 4ε0 ε(u1,u2,ur)

×
[(

σc

r12 − σ(u1,u2,ur) + σc

)12

−
(

σc

r12 − σ(u1,u2,ur) + σc

)6]
(2)

where we take the interaction range parameter
as σc = 0.158 σ0, and ε0 is the unit of energy.
Since in this study we are mainly interested in
assessing the effects due to shape anisotropy
alone, we have chosen a centrosymmetric attrac-
tion term ε(u1,u2,ur) that brings the molecules
closer without any energetic preference for top–
to–top, top–to–base, or base–to–base interac-
tions (see Fig. 3). In practice, the interaction
term ε(u1,u2,ur) in equation 2, is modelled by
using the centrosymmetric expression reported
in Ref. [24], with coefficients ε000 = 81.25,
ε101 = 0, ε011 = 0, ε220 = −1.25, ε202 = 3.75,
ε022 = 3.75, λ110 = 0, λ220 = 1.5, and λ′220 = 0.

3 Monte Carlo simulations

We have performed off–lattice Monte Carlo
(MC) simulations of a system of bowl–shaped
mesogens described above in the isobaric-
isothermal (MC–NPT) ensemble at dimension-
less pressure P ∗ = σ3

0P/ε0 = 8, simulating bulk
samples of N = 1024, and 8192 particles mod-
elled with the coarse–grained pair potential de-
scribed before, and considering a wide range
of dimensionless temperature T ∗ = kBT/ε0.

Some runs have also been performed on larger
samples of N = 32000 particles. The sam-
pling ranges for the standard MC moves were
adjusted run–time to give an average accep-
tance ratio of 40% at all temperatures, ranging
between 0.01 σ0 and 0.05 σ0 for translations,
and 2◦ and 10◦ for rotations. The phase di-
agram has been explored performing sequences
of both cooling–down and heating–up MC runs,
starting each simulation from a configuration
well equilibrated at the previous temperature.
We have found isotropic (I), nematic (N), and
columnar (C) phases. We should remark that
systems formed by bowlic molecules are exper-
imentally known to give rise to glassy–like ma-
terials [7], and this behaviour does make the
computation of statistically reliable thermody-
namic properties very demanding because the
equilibration stage of the simulation is slowed
down by the many local free energy minima typ-
ical of the highly structured columnar organisa-
tions which are visited during the MC evolution,
and that are difficult to unlock. To enhance the
MC sampling efficiency and to avoid the for-
mation of artifacts (e.g. cavities) in the lower
temperature samples we have used a triclinic
simulation box [33] with three–dimensional pe-
riodic boundary conditions, allowing box sides
and shape to evolve independently during both
MC equilibration and production runs. To re-
duce the chance of being trapped in metastable
glassy phases, we have augmented the standard
set of randomly attempted translational and ori-
entational MC moves with both top–base flips
of particles, and whole column cluster moves.
The first kind of extended MC moves [34] at-
tempts to exchange particle top with base by
performing a 180◦ rotation around the molecu-
lar y axis. Such flip moves have been randomly
attempted with an average 0.2 probability com-
pared to the standard rotational–translational
MC moves, and with average acceptance ratios
ranging from 1% for the lowest T ∗ up to 12% for
the highest temperatures. The second kind of
extended MC moves randomly attempts collec-
tive roto–translations and top–base flip of clus-
ters [34, 35] of particles (i.e. entire columns or
stacks), with average acceptance ratio 1%, and
sampling ranges 0.003 σ0 to 0.004 σ0 for trans-
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lations, and 0.7◦ to 1◦ for rotations.

After equilibration the average thermodynamic
observables have been computed sampling a
configuration every 20 MC cycles, with one cycle
being a random sequence of N attempted MC
moves. Very long simulation runs, compared to
the standard employed for molecular resolution
models [22] have been employed: the equilibra-
tion runs were at least 400 kcycles, while typ-
ical production runs were considerably longer
(up to 1000 kcycles). Using the results of a
preliminary set of exploratory MC simulations
on the smallest (N = 1024 particles) system,
we have sampled the temperature points of the
N = 8192 sample over a non uniform grid, using
a slightly finer mesh in the proximity of phase
transitions. Only selected temperatures have
been studied for the largest N = 32000 sample
size. In the following section we report results
from MC–NPT simulations following a cooling–
down sequence, starting from a well equilibrated
isotropic sample at T ∗ = 1.6.

4 Results and discussion

We start from the principal features of the phase
diagram for the system. Considering the aver-
age adimensional enthalpy 〈H∗〉 = 〈H〉/ε0 mea-
sured in a cooling–down temperature scan (see
Figs. 4–A, and Table 1) we observe that the sys-
tem first undergoes at T ∗ = 1.45 a weak tran-
sition to nematic, shortly followed at T ∗ = 1.38
by a second one to a columnar structure. The
transition temperatures have been estimated as
the midpoint between the last temperature of
a previous phase and the first of a following
one. We have based our discussion on a cooling–
down sequence from isotropic because this pro-
tocol usually gives more reliable results for the
ordering in self–assembling processes. We note
that the range of stability for the nematic phase
is rather narrow, possibly because the shape
anisotropy strongly favours molecules packing
into densely stacked clusters.

The spontaneous onset of orientational and po-
sitional ordering appearing from the MC cooling
runs is associated with a large increase in den-
sity due to the stacking–up of particles. The

average number density 〈ρ∗〉 = σ3
0N〈1/V 〉 of

Fig. 4–B and Table 1 shows first a substantial
increment at the nematic transition and then
an even larger increase (from 〈ρ∗〉 = 3.4 to 4.5)
when the columnar transition temperature is
reached. The density shows instead a decrease
at even lower temperatures, highlighting the dif-
ficulty of fully packing the sample, at least in a
cooling run and in the absence of an external
orienting field. This can can be interpreted as
due to the formation of a multi–domain struc-
ture of densely packed columns oriented in dif-
ferent directions. The typical features of the low
temperature organisations are apparent from
the snapshot of Fig. 6–A which clearly shows
a liquid crystalline structure formed by small
domains of polar columns.

The onset of orientational ordering in liquid
crystalline phases is determined with the second
rank order parameter 〈P2〉 = 〈(3(ui ·n)2−1)/2〉,
expressing the average orientation of the molec-
ular axis ui with respect to the mesophase di-
rector n. The order parameter is computed
with the standard algorithm [36, 37] employed
in liquid crystals computer simulations from the
largest eigenvalue of a sample averaged ordering
matrix Q = 〈3ui ⊗ ui − I〉/2 [36]. The diago-
nalisation of Q provides also the direction of n
from the corresponding eigenvector.

As we lower the temperature, the average or-
der parameter 〈P2〉 (plotted in Fig. 5–A, and
reported in Table 1) shows a discontinuity when
the nematic ordering transition takes place. For
the smallerN = 1024 sample the order increases
upon reducing T ∗. Surprisingly, for a further
reduction of temperature the overall order pa-
rameter in the larger N = 8192, and 32000
samples does not increase as it is expected in
thermotropic LC, but rather it even decreases
or levels to a plateau value. This unusual be-
haviour, connected to that already seen in the
density, corresponds to the columns not being
globally oriented in space. We point out that in
a multidomain system the overall average 〈P2〉
can be written as a product of the order pa-
rameters for the molecules inside the columns
(measured with respect to each column princi-
pal axis), and an order parameter giving the av-
erage alignment of the column axes with respect
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to the overall director 〈P2〉 = 〈P2〉axes〈P2〉intra.

In Fig. 5–B we show the order of the molecules
with respect to their column axis. We see that
the order parameter inside the columns 〈P2〉intra

increases regularly decreasing the temperature,
as expected. We also see that increasing system
size the isotropic–nematic transition is slightly
shifted to lower temperatures.

The knowledge of the director n allows the di-
rect computation of other order parameters. For
instance, to assess if the samples spontaneously
gained an overall net polarisation we have also
computed the average first rank Legendre poly-
nomial 〈P1〉 = 〈ui · n〉, also shown in Table 1.
For all temperatures explored by the MC–NPT
simulations the 〈P1〉 order parameter was al-
ways zero, so we conclude that at the micro-
scopic scale explored by the MC simulations
our system of bowlic particles does not spon-
taneously polarise. This is similar to what has
been found by Photinos and coworkers with a
soft–core lattice model of conical mesogens [21].

We can immediately see (with the help of a
colour coding of the particles orientation, see
Fig. 6–C), that the number of upward and
downward oriented polar columns is balanced.
The piling up of top–to–base pairs leads to
build–up of polar order inside a column, until
this stacking terminates with a top–to–top or
base–to–base pair (i.e. a defect), or a boundary
surface separating neighbouring domains. This
kind of positional structuring is essentially ab-
sent in the nematic phase (see Fig. 6–B) where
the large majority of particle stacks is not longer
than three units.

We notice that the columnar aggregates are not
permanent. We have checked the reversibil-
ity of the spontaneous self assembling process
by heating the lowest temperature sample di-
rectly above the nematic–isotropic transition,
and we have observed a large volume increase
associated to column disassembling. By con-
ducting instead gradual heating runs from an
intermediate temperature columnar system, we
have found considerable hysteresis effects in the
phase diagram, before the isotropic eventually
appears, related to the different multi–domain
structure of the samples which can not be con-
trolled. Nonetheless we note that the intra–

columnar order is comparable in both cases (see
Fig. 5–B).
In view of the large temperature dependence
of the number density, and to assess whether
our simulations produced fluid ordered phases
and not solid structures, we have calculated the
root mean square translational displacements
〈∆r2〉1/2

a along directions parallel and perpen-
dicular to the mesophase director n (see Fig. 7)

` ≡ 〈∆r2〉1/2
a =


N∑
i

M∑
n

[
r
(n)
i,a − r

(0)
i,a

]2
NM


1/2

(3)

where a = ‖, or ⊥ refers to the particles posi-
tion with respect to the director frame after n of
M MC cycles starting from an arbitrary initial
point. We have found small mobilities with val-
ues comparable with those of other columnar
model systems (e.g. discotic Gay–Berne sam-
ples [38]) and down to ` ' 0.15 [39], solid–like
according to the standard Lindemann type cri-
terion [39]. These root mean square displace-
ments increase steadily with temperature, with
nematic being fluid. The most unexpected re-
sult was that in both nematic and columnar
phases we did not observe a net anisotropy be-
tween the parallel and perpendicular compo-
nents. This can be interpreted once more as
associated with the formation of a uniform dis-
tribution of multi–domain columnar structures
(see Fig. 6–A).
The essential features of short–range positional
correlations typical of specific anisotropic or-
dered structures can be assessed analysing the
radial correlation function

g0(r) = 〈δ(r − r12)〉12/(4π
2ρ) (4)

where the angular brackets 〈. . .〉12 notation
stands for an ensemble average over all parti-
cle pairs. Thus, g0(r) allows to discriminate be-
tween the typical short–range positional order
in the nematic and columnar phases. The ra-
dial correlation function for the nematic phase
(shown in Fig. 8–B) is characterised by a very
limited short–range structuring. At these tem-
peratures g0(r) is very similar to those of dis-
cotics systems [38], with the concave shape of
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the particles only determining a small peak at
r∗ = 0.25. The probability of observing a pair of
molecules at distances corresponding to stacked
structures comprising more than three units is
fairly small, in agreement with the qualitative
conclusions drawn inspecting Fig. 6–B. The only
signature for local positional ordering has been
measured for distances typical of side–by–side
configurations (with r∗ ≈ 0.8). The g0(r) for
the isotropic phase (not shown here) is qualita-
tively similar to that for the nematic phase but
with even smaller short–range density probabil-
ity of pairs.

In the columnar phase the molecular organisa-
tion is strongly affected by the bowlic shape of
the particles and we see from Fig. 8–A that at
distances r∗ ≈ 0.2 corresponding to a top–to–
base sequence of stacked molecules with parallel
orientation (see Fig. 2–A, with θr either 90◦, or
270◦) the g0(r) histogram has a sharp peak. The
second peak is for r∗ ≈ 0.8 which corresponds
to parallel and anti–parallel molecules side–by–
side (see Figs. 2–A and 2–D, with θr either 0◦,
or 180◦) belonging to neighbouring columns.

Some further insights on the short–range po-
lar arrangements can be derived by the first
rank orientational correlation S110(r) = −〈δ(r−
r12) u1 ·u2〉12/

√
3 (see Figs. 8–A and 8–B) which

for distances corresponding to highly aligned
parallel molecules in a top–to–base configura-
tion and, apparent for all temperatures, has
a sharp drop from zero towards the boundary
−0.57 value. The distance range spanning this
negative portion of the correlation function is
smallest in the isotropic phase (not shown here),
and increases regularly when reducing the tem-
perature and after an ordering phase transition.
The short–range polar correlations are mean-
ingful (in the sense of being associated with a
relevant population of pairs) only for the colum-
nar phase, because in the isotropic and nematic
phases the g0(r) values for these separations are
fairly small. For larger distances involving sam-
pling regions which extend even over antiparal-
lel pairs belonging to neighbouring columns, the
average correlation becomes first weakly posi-
tive, and then for all temperatures averages to
zero. This is especially the case for distances
where the nematic and isotropic radial correla-

tions have the absolute maximum. Even these
correlations support (in agreement with the 〈P1〉
values of Table 1) the picture that this system
does form polar columnar assemblies, but is de-
void of an overall net polarisation.

An essential part of the present work is to in-
vestigate the molecular organisation in columns
and the first step is to decide if a molecule
belongs to a column or not. To this pur-
pose we have contrived a simple algorithm to
map stacked pairs and identify one–dimensional
columnar structures. Two particles are defined
as jointly stacked if all these conditions are si-
multaneously met: (a) the pair distance r12 is
smaller than 0.5 σ0; (b) the angle between par-
ticle orientations u1, u2 is smaller than 30◦; and
(c) both angles between the intermolecular vec-
tor r12 and the particles orientations u1, u2 are
smaller than 35◦. By using these heuristic pa-
rameters, a particle can at most be labelled as
linearly stacked with two other molecules (one
“above”, and one “below”). A column of length
np particles can then be defined as a collec-
tion of np − 1 chained pairs with repeated la-
bels. When analysing the MC configurations, to
avoid averaging properties originating from un-
stable structures, we define a column as a stack
containing not less than 4 particles. Using these
empirical parameters we never observe occur-
rences of columnar aggregates in the isotropic
phase.

The previous algorithm, specific for linearly
stacked aggregates, provided a list of columns
which has been used to compute ensemble av-
erages and histograms on every MC configura-
tion produced by the MC simulations. We re-
port in Fig. 9 the number nc of columns formed
by np particles for some selected temperatures
of the nematic and columnar phases. The dis-
tribution for the nematic phase at T ∗ = 1.4
shows the presence of a limited average num-
ber of fairly short stacks. On the other hand,
the histograms at T ∗ = 1.37, and T ∗ = 1.25
tell us that in the columnar phase a rich pop-
ulation of one–dimensional structures appears.
In both cases the shape of the distributions is
similar, with a maximum corresponding to very
short columns. This portion of the histogram
has the larger temperature dependence, while
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the tails of the distributions do not substan-
tially differ between the samples at T ∗ = 1.37,
and T ∗ = 1.25. This is consistent with a
picture of a thermotropic columnar transition
where the principal structuring in ordered do-
mains, with tens of stacked molecules for every
column, immediately takes place when the ne-
matic phase becomes relatively unstable. The
subsequent lowering of temperature mostly af-
fects the fraction of isolated molecules which
pair to form short supramolecular structures or
possibly enlarge existing ones. To further clarify
this anisotropic structuring we report in Table 2
the temperature dependence of the average frac-
tion of particles belonging to columns 〈xc〉, as
well as the average number of particles per col-
umn 〈np〉 (in terms of number of units forming
an ordered stack), and the average number of
columns 〈nc〉. The average 〈np〉, and 〈nc〉 val-
ues are fairly small in the isotropic and nematic
phases, even though the fraction 〈xc〉 roughly
doubles when the liquid crystalline phase transi-
tion takes place. A further reduction of temper-
ature induces a dramatic increase in the average
number 〈nc〉 and length 〈np〉 of columnar struc-
tures, which remain afterwards constant with
respect to T , as also does the fraction 〈xc〉.
Having mapped all ordered aggregates it is pos-
sible to compute the radial correlation func-
tion using a column–wise sampling of g0(r)
where molecular pairs at a given distance are
included only when they belong to the same
stacked structure. This overcomes the prob-
lems arising with the standard sampling over
spherical shells, which smooths out many de-
tails of the complex highly anisotropic struc-
tures of our type of systems. In Fig. 10–A we
observe quite a different shape in the pair corre-
lation histograms when using this column–wise
sampling scheme. The structuring is negligible
in the isotropic and nematic systems (see inset
of Fig. 10–A), while in the columnar phase the
first– and second–neighbour maxima are fairly
well defined. For longer distances, the g0(r)
decreases without further evidences of regular
structuring. This can be interpreted in view
of the smaller population of longer stacks (see
Fig. 9), but also from the presence of many not
linear stacks, like the one shown in Fig. 10–B,

where the winding sections have different spac-
ing between stacked particles which smooths out
the regular sequence of maxima and minima in
the density distribution.

The second level of supramolecular organisa-
tion, i.e. the assembling of columns into polar
domains, see e.g. Fig. 11, was quite surpris-
ing. In fact, while the one–dimensional stack-
ing effect was expected from simple considera-
tions about the bowl shape of the steric dipoles,
the structuring of columns into polar domains
was not immediately recognised as related to
this feature. This property is not originated
from the specific anisotropy of the attractive
part of the pair potential (see Fig. 3), because
the energy surface is centro–symmetrical and
neighbouring parallel or antiparallel columns
would have the same interaction. An additional
step necessary for the characterisation of these
structures was the setting up of a specific pro-
cedure aimed at mapping polar columnar do-
mains. Two stacks are mapped as forming an
inter–columnar assembly if these two conditions
are simultaneously met: (a) the distance be-
tween the columns centres of mass is smaller
than 1.5 σ0; and (b) the angle between col-
umn orientations, which has been defined as the
normalised average of its particle orientations,
is smaller than 15◦. Using this procedure all
structures without a globular shape (e.g. single
threads) were not taken into account. Again, to
refrain from averaging contributions stemming
from strongly fluctuating structures, the min-
imum number of neighbouring columns to be
accounted as forming a domain has been set to
3. The distributions of the number nd of do-
mains formed by the grouping of nc columns
are shown in Fig. 12. We observe for the low-
est temperatures a scattered population, where
more than 98% of the total number of particles
organised in columnar structures are formed by
up to 20 stacks. A lowering of temperature from
T ∗ = 1.37 to T ∗ = 1.25 introduces a signifi-
cant population increase also in the low nc his-
togram bins corresponding to domains formed
by tens of stacks. We conclude that the ma-
jor effect of temperature on the columnar phase
is that of strongly increasing the inter–column
correlations, while the intra–column structure is
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less influenced. The histogram for T ∗ = 1.4 in
Fig. 12 shows that the nematic phase is practi-
cally devoid of columnar clusters larger than 3
stacks. The outcome from the structural analy-
sis of columnar domains for the various temper-
atures is summarised in Table 3 where we report
the average fraction of columns organised in do-
mains 〈xd〉, the number of domains 〈nd〉, and
the number of columnar stacks per domain 〈ns〉.
The average fraction 〈xd〉 is practically zero in
the isotropic and nematic phases, and becomes
larger than 80% after the columnar phase tran-
sition. This is consistent with the discussion of
the distributions of Fig. 12. Once the stacks as-
semble and form domains, the average fraction
〈xd〉 does not change much with temperature.
This constant behaviour arises from two order-
ing process with opposite trends. The average
number of domains 〈nd〉 of Table 3 steadily in-
creases when lowering the temperature, while
the number of columns within each domain de-
creases on average. This can be interpreted with
an increase in internal ordering within each do-
main accompanied by the coalescing of smaller
stacks to form longer ones (see also Fig. 12).

In order to understand the molecular origin of
the polar domains, we have studied the typi-
cal structure of the boundary between regions
with opposite polarities (see Fig. 11). We have
found a systematic interleaving spacing between
column ends of neighbouring clusters with top–
to–top boundary structure (see the geometrical
sketches in Figs. 13–A and 13–B). The columns
of both confining regions match their orienta-
tions by displacing laterally with respect to the
common direction of polar alignment. This
top–column particle coordination of neighbours
favours the formation of stacks with opposite
polarity in the adjacent domain. To verify more
quantitatively this observation we have com-
puted correlation functions specifically consid-
ering only pairs of particles at the end of dif-
ferent stacks (those ending their column with
a cusp). In Fig. 14–A we report the radial
g0(rend), and the orientational particle–particle
S110(rend) and particle–intermolecular vector
S101(rend) = −〈δ(rend − r12) (u1 · ur)〉end−12/

√
3

correlation functions. The symbol rend repre-
sents the distance between end–particles of dis-

tinct stacks. The pictorial scheme of Fig. 14–
B helps in assigning the various local maxima
of the correlation functions to specific config-
urations of end–particles belonging to different
columns at various distances. The spacing of
the alternated sequence of maxima and minima
for the S110(rend) correlation (see red dashed
curve in the inset of Fig. 14–A) is consistent
with the proposed boundary structure of inter-
calated end–particles with opposite orientation
(see also Figs. 2–A, and 2–D).

4.1 Conclusions

We have studied the formation of columnar
structures in a system of bowl–shaped molecules
using off–lattice computer simulations. To
model concave particles we have generalised the
molecular resolution Gay–Berne potential via a
suitable series expansion for two bowl–shaped
molecules. The MC–NPT simulations we have
run with this model showed that its particu-
lar shape induces two types of polar ordering:
one dimensional order along columns of stacked
particles, and organisation in three-dimensional
polar clusters of parallel columns. In our case
attraction anisotropy can hardly play any role
in polar ordering, because we have chosen a
centro–symmetrical attractive part of the GB
potential. However, the polar stacks do not ex-
tend across the whole sample, and we do not
observe a net overall polarisation. We have
characterised these two levels of supramolec-
ular ordering by defining heuristic procedures
to identify and map columns and coherent do-
mains of stacks. The first ordering effect was
easily predictable from geometrical considera-
tions about the bowl shape giving rise to pil-
ing up in stacks, but the second was quite un-
expected. We have proposed a mechanism for
the formation of polar domains which again re-
lies on the shape anisotropy of our model parti-
cles. The defects terminating the columns can
be explained by the coordination effect of the
columns tips on antiparallel particles in contact
with them. This effect arise from the packing of
column ends at the boundary between domains
assembling with opposite polarity, and provides
an effective way of terminating columns. This

8



defect stabilisation in turn indicates that chang-
ing from discotic to bowlic shape may be insuf-
ficient to ensure very long coherent molecular
stacks as needed to optimise transport in or-
ganic electronic devices, supporting the need for
more specific attractive interactions to stabilise
polar domains.
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Table 1: Average orientational order parameter 〈P2〉, dimensionless enthalpy 〈H∗〉, and number
density 〈ρ∗〉 for the MC–NPT simulations of the N = 8192 system giving isotropic (I), nematic
(N), and columnar (C) phases as indicated. Estimated rms errors on the averages (sampling a
configuration every 20 MC cycles) are also given.

T ∗ 〈P2〉 〈P1〉 〈H∗〉 〈ρ∗〉 phase
1.25 0.52± 0.05 0.004± 0.013 −9.89± 0.20 4.33± 0.18 C
1.30 0.57± 0.04 0.023± 0.012 −9.66± 0.31 4.53± 0.19 C
1.35 0.55± 0.19 0.003± 0.013 −9.20± 0.71 4.30± 0.31 C
1.37 0.62± 0.06 0.035± 0.016 −8.46± 0.54 3.95± 0.21 C
1.40 0.65± 0.01 0.001± 0.008 −4.28± 0.09 3.39± 0.02 N
1.42 0.59± 0.01 0.000± 0.009 −3.60± 0.09 3.24± 0.02 N
1.44 0.08± 0.05 0.000± 0.007 −1.55± 0.10 2.87± 0.02 I
1.45 0.08± 0.07 0.000± 0.007 −1.41± 0.15 2.84± 0.03 I
1.50 0.02± 0.01 0.000± 0.006 −0.91± 0.07 2.72± 0.01 I
1.55 0.02± 0.01 0.000± 0.006 −0.60± 0.06 2.64± 0.01 I
1.60 0.02± 0.01 0.000± 0.006 −0.34± 0.06 2.57± 0.01 I

Table 2: Temperature dependence of the average fraction of particles belonging to columns 〈xc〉,
number of particles per column 〈np〉, and number of columns 〈nc〉 from the MC–NPT simulations
of the N = 8192 system. Estimated rms errors on the averages are ±1 on the last digit.

T ∗ 〈nc〉 〈np〉 〈xc〉
1.25 584.2 6.82 0.49
1.30 549.8 6.85 0.46
1.35 576.0 6.60 0.46
1.37 497.7 7.11 0.43
1.40 20.9 4.18 0.01
1.42 12.7 4.14 0.01
1.44 5.1 3.90 0.01
1.45 2.5 3.61 0.00
1.50 0.9 2.32 0.00
1.60 0.1 0.33 0.00
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Table 3: Temperature dependence of the average fraction of columns organised into domains 〈xd〉,
number of domains 〈nd〉, and number of columnar stacks per domain 〈ns〉 from the MC–NPT
simulations of the N = 8192 system. Estimated rms errors on the averages are ±1 on the last
digit.

T ∗ 〈nd〉 〈ns〉 〈xd〉
1.25 27.0 116.4 17.74
1.30 23.9 145.3 19.89
1.35 14.3 191.7 39.86
1.37 14.3 173.1 33.53
1.40 0.1 0.0 0.00
1.42 0.0 0.0 0.00
1.44 0.0 0.0 0.00
1.45 0.0 0.0 0.00
1.50 0.0 0.0 0.00
1.60 0.0 0.0 0.00
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Y
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X

2R

(B)

Figure 1: A schematic representation (scheme A) of the geometrical algorithm (see Ref. [24])
employed to generate a discrete approximation of the pair contact distance σ(u1,u2,ur). As
sketched in the cross section (scheme B) two particles with given orientations u1, u2 are enclosed
by virtual spheres of radius R positioned at the centres of mass and tangent along the inter–
particle position vector r12 taken here parallel to the laboratory Z axis. The two molecular
surfaces are mapped with a finite sampling grid to determine the minimum distance σm = Z2−Z1

between pairs of points with the same X, and Y coordinates. The contact distance is computed
as σ(u1,u2,ur) = 2R− σm.
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Figure 2: Contact distances profiles as computed from the algorithm described in Ref. [24] (blue
solid lines) and from series expansion, eq. 1 (red dashed lines) for two bowl–shaped particles, for
different configurations, as illustrated by the side sketchs, with: (A) parallel, (B) tee, (C) cross,
(D) antiparallel. The contact distance is represented as the radial distance from a particle kept
fixed (both in position and orientation) at the origin, and a second one with fixed orientation,
moving around the first one.
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Figure 3: Distance dependence of the dimensionless pair interaction energy U∗ = U/ε0 for a pair
of bowl–shaped molecules with specific parallel (blue solid lines), and antiparallel (red dashed
lines) relative orientations. The well depths for parallel or antiparallel configurations are the
same, and the polarity in the potential stems only from the specific geometrical anisotropy (steric
dipole).
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Figure 4: Dimensionless average enthalpy 〈H∗〉 = 〈H〉/ε0 (plate A), and number density 〈ρ∗〉 =
σ3

0N〈1/V 〉 (plate B) as a function of temperature from as a function of temperature from MC–
NPT simulations at P ∗ = 8, for the system of N = 8192 molecules in the isotropic (I), nematic
(N), and columnar (C) phases. The vertical dotted lines indicate the transition temperatures for
the N = 8192 system, estimated as the midpoint between neighbouring phases.
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Figure 5: The average overall 〈P2〉 (plate A), and the intra–column 〈P2〉intra (plate B) orientational
order parameters, as a function of dimensionless temperature from a cooling–down sequence of
NPT Monte Carlo simulations of the N = 1024 (squares, red), N = 8192 (triangles down, blue)
and N = 32000 (diamonds, black) molecules system, at dimensionless pressure P ∗ = 8, in the
isotropic (I), nematic (N), and columnar (C) phases. The results obtained from the heating of
an intermediate low–temperature N = 8192 sample (triangles up, magenta) are also plotted. The
vertical dotted lines indicate the transition temperatures for the N = 8192 system, estimated as
the midpoint between neighbouring phases.

15



0°

180°

β

(C)

Figure 6: Snapshots obtained from MC–NPT simulations at P ∗ = 8 of the N = 8192 molecules
sample. The polar domain organisations are clearly visible in the columnar sample simulated
at T ∗ = 1.3 (plate A). In the snapshot of the nematic phase at T ∗ = 1.42 (plate B) no polar
domains are present and only short stacks typically three–particles long can be found. The colour
coding of the palette (plate C) refers the angle cos β = ui ·n between particle orientations ui and
mesophase director n.
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Figure 7: Dimensionless root mean square displacements 〈∆r2
‖〉1/2/σ0 (circles, blue), and

〈∆r2
⊥〉1/2/σ0 (squares, red) measured along the uniaxial director n (parallel, ‖), and with re-

spect to an arbitrary orthogonal direction m (perpendicular, ⊥) from MC–NPT runs at P ∗ = 8,
for the system of N = 8192 molecules.
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Figure 8: Average radial g0(r
∗), and orientational S110(r∗) correlation functions at temperatures

T ∗ = 1.3 (plate A) and T ∗ = 1.42 (plate B) corresponding to the columnar and nematic phases.
The dimensionless intermolecular distance is r∗ = r/σ0.
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Figure 9: Distributions of the number of columns nc formed by a number np of particles, at
T ∗ = 1.25 (C), T ∗ = 1.37 (C), and T ∗ = 1.4 (N), from the MC–NPT simulations of the N = 8192
system.
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Figure 10: Average radial correlation function g0(r
∗) (plate A) computed along columnar stacks

(and normalised with respect to the number of columns), as a function of intermolecular distance
r∗, at temperatures T ∗ = 1.25 (columnar phase, blue solid line), T ∗ = 1.42 (nematic phase, red
short–dashed line), and T ∗ = 1.5 (isotropic phase, black long–dashed line). A snapshot of a
winding stack of particles frequently found in the columnar phases is also shown (plate B).

Figure 11: Detail of a N = 8192 columnar sample at T ∗ = 1.37 showing two polar domains formed
by columns pointing upward (yellow), and downward (blue) with respect to the local mesophase
director.
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Figure 12: Distributions of the number of domains nd with a given size, expressed as the number
of columns nc belonging to the domain itself, at T ∗ = 1.25 (C), T ∗ = 1.37 (C), and T ∗ = 1.4
(N), from the MC–NPT simulations of the N = 8192 system.
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Figure 13: Geometrical sketches of lateral (scheme A), and top (scheme B) views of the typi-
cal boundary region separating polar columnar domains: an end–particle induces the terminal
molecules of three neighbouring columns to be antiparallel (and vice–versa).
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Figure 14: Average radial correlation function g0(r
∗
end) (blue solid line), and orientational correla-

tion function S110(r∗end) between end–particles orientations (red short–dashed line), and S101(r∗end)
between particles and intermolecular vector orientations (black long–dashed line), for the colum-
nar sample at T ∗ = 1.3 (plate A). The local maxima of the correlation functions are labelled
according to the scheme B, where rend is the distance between end–particles. To help in the
visualisation, the short–range portions of the orientational correlations is enlarged in the inset of
plate A.
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Appendix
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Figure A–1: A schematic cross–section of the uniaxial bowl–shaped particle (cut along the vertical
x = 0 plane), with length–to–width ratio l/w = 0.9, base–to–frame ratio h/l = 0.4, and top conic
angle θ = 34◦ used to define the contact distance function whose approximation (as in Ref. [24])
enters into the generalised GB potential. The three–dimensional steric dipole is obtained by a 2π
rotation about the molecular z axis. The Bezier control points qi are also shown (see Ref. [29]),
and their positions with respect to the molecular frame axes are given in Table A–1.

qi yi zi qi yi zi

q1 0.24 0.00 q2 0.39 −0.31

q3 0.49 −0.31 q4 0.22 0.10

q5 0.05 0.35 q6 −0.05 0.35

q7 −0.22 0.10 q8 −0.49 −0.31

q9 −0.39 −0.31 q10 −0.24 0.00

q11 −0.11 0.22 q12 0.11 0.22

Table A–1: The positions of the control points qi defining the four Bezier parametric curves [29]
used to model the vertical x = 0 cross section of Fig. A–1.
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[000] = 0.05097 [011] = 0.01108 [101] = 0.01108 [112] = 0.00254

[121] = 0.00304 [211] = 0.00304 [132] = 0.01580 [312] = 0.01580

[143] = 0.00636 [233] = 0.00857 [323] = 0.00857 [413] = 0.00636

[154] = 0.00311 [235] = 0.00578 [244] = 0.00211 [325] = 0.00578

[334] = 0.01531 [343] = 0.00261 [424] = 0.00211 [433] = 0.00261

[514] = 0.00311 [165] = 0.00340 [336] = 0.03973 [345] = 0.00940

[354] = 0.00628 [435] = 0.00940 [462] = 0.00138 [534] = 0.00628

[552] = 0.00173 [615] = 0.00340 [642] = 0.00138 [176] = 0.00308

[266] = 0.00363 [347] = 0.01578 [356] = 0.00594 [365] = 0.00495

[437] = 0.01578 [446] = 0.00260 [536] = 0.00594 [563] = 0.00222

[626] = 0.00363 [635] = 0.00495 [653] = 0.00222 [716] = 0.00308

[277] = 0.00519 [367] = 0.00674 [448] = 0.01059 [637] = 0.00674

[727] = 0.00519 — — —

Table A–2: Explicit values of the 49 expansion coefficients [L1L2L3] ≡ σL1L2L3 used to approxi-
mate (with the procedure of Ref. [24]) the anisotropic contact distance between a pair of bowl–
shaped particles obtained as a solid of rotation from the Bezier control points qi of Table A–1.
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Table 1 Average orientational order parameter 〈P2〉, dimensionless enthalpy 〈H∗〉, and number
density 〈ρ∗〉 for the MC–NPT simulations of the N = 8192 system giving isotropic
(I), nematic (N), and columnar (C) phases as indicated. Estimated rms errors on the
averages (sampling a configuration every 20 MC cycles) are also given.

Table 2 Temperature dependence of the average fraction of particles belonging to columns 〈xc〉,
number of particles per column 〈np〉, and number of columns 〈nc〉 from the MC–NPT
simulations of the N = 8192 system. Estimated rms errors on the averages are ±1 on
the last digit.

Table 3 Temperature dependence of the average fraction of columns organised into domains
〈xd〉, number of domains 〈nd〉, and number of columnar stacks per domain 〈ns〉 from
the MC–NPT simulations of the N = 8192 system. Estimated rms errors on the
averages are ±1 on the last digit.

Table A–1 The positions of the control points qi defining the four Bezier parametric curves [29]
used to model the vertical x = 0 cross section of Fig. A–1.

Table A–2 Explicit values of the 49 expansion coefficients [L1L2L3] ≡ σL1L2L3 used to approx-
imate (with the procedure of Ref. [24]) the anisotropic contact distance between a pair
of bowl–shaped particles obtained as a solid of rotation from the Bezier control points
qi of Table A–1.
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Figure 1 A schematic representation (scheme A) of the geometrical algorithm (see Ref. [24])
employed to generate a discrete approximation of the pair contact distance
σ(u1,u2,ur). As sketched in the cross section (scheme B) two particles with given
orientations u1, u2 are enclosed by virtual spheres of radius R positioned at the cen-
tres of mass and tangent along the inter–particle position vector r12 taken here par-
allel to the laboratory Z axis. The two molecular surfaces are mapped with a finite
sampling grid to determine the minimum distance σm = Z2 − Z1 between pairs of
points with the same X, and Y coordinates. The contact distance is computed as
σ(u1,u2,ur) = 2R− σm.

Figure 2 Contact distances profiles as computed from the algorithm described in Ref. [24]
(blue solid lines) and from series expansion, eq. 1 (red dashed lines) for two bowl–
shaped particles, for different configurations, as illustrated by the side sketchs, with:
(A) parallel, (B) tee, (C) cross, (D) antiparallel. The contact distance is represented
as the radial distance from a particle kept fixed (both in position and orientation) at
the origin, and a second one with fixed orientation, moving around the first one.

Figure 3 Distance dependence of the dimensionless pair interaction energy U∗ = U/ε0 for a
pair of bowl–shaped molecules with specific parallel (blue solid lines), and antiparallel
(red dashed lines) relative orientations. The well depths for parallel or antiparallel
configurations are the same, and the polarity in the potential stems only from the
specific geometrical anisotropy (steric dipole).

Figure 4 Dimensionless average enthalpy 〈H∗〉 = 〈H〉/ε0 (plate A), and number density 〈ρ∗〉 =
σ3

0N〈1/V 〉 (plate B) as a function of temperature from as a function of temperature
from MC–NPT simulations at P ∗ = 8, for the system of N = 8192 molecules in the
isotropic (I), nematic (N), and columnar (C) phases. The vertical dotted lines indicate
the transition temperatures for the N = 8192 system, estimated as the midpoint
between neighbouring phases.

Figure 5 The average overall 〈P2〉 (plate A), and the intra–column 〈P2〉intra (plate B) orienta-
tional order parameters, as a function of dimensionless temperature from a cooling–
down sequence of NPT Monte Carlo simulations of the N = 1024 (squares, red),
N = 8192 (triangles down, blue) and N = 32000 (diamonds, black) molecules system,
at dimensionless pressure P ∗ = 8, in the isotropic (I), nematic (N), and columnar (C)
phases. The results obtained from the heating of an intermediate low–temperature
N = 8192 sample (triangles up, magenta) are also plotted. The vertical dotted lines
indicate the transition temperatures for the N = 8192 system, estimated as the mid-
point between neighbouring phases.

Figure 6 Snapshots obtained from MC–NPT simulations at P ∗ = 8 of the N = 8192 molecules
sample. The polar domain organisations are clearly visible in the columnar sample
simulated at T ∗ = 1.3 (plate A). In the snapshot of the nematic phase at T ∗ = 1.42
(plate B) no polar domains are present and only short stacks typically three–particles
long can be found. The colour coding of the palette (plate C) refers the angle cos β =
ui · n between particle orientations ui and mesophase director n.

Figure 7 Dimensionless root mean square displacements 〈∆r2
‖〉1/2/σ0 (circles, blue), and

〈∆r2
⊥〉1/2/σ0 (squares, red) measured along the uniaxial director n (parallel, ‖), and
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with respect to an arbitrary orthogonal direction m (perpendicular, ⊥) from MC–NPT
runs at P ∗ = 8, for the system of N = 8192 molecules.

Figure 8 Average radial g0(r
∗), and orientational S110(r∗) correlation functions at tempera-

tures T ∗ = 1.3 (plate A) and T ∗ = 1.42 (plate B) corresponding to the columnar and
nematic phases. The dimensionless intermolecular distance is r∗ = r/σ0.

Figure 9 Distributions of the number of columns nc formed by a number np of particles, at
T ∗ = 1.25 (C), T ∗ = 1.37 (C), and T ∗ = 1.4 (N), from the MC–NPT simulations of
the N = 8192 system.

Figure 10 Average radial correlation function g0(r
∗) (plate A) computed along columnar stacks

(and normalised with respect to the number of columns), as a function of intermolecu-
lar distance r∗, at temperatures T ∗ = 1.25 (columnar phase, blue solid line), T ∗ = 1.42
(nematic phase, red short–dashed line), and T ∗ = 1.5 (isotropic phase, black long–
dashed line). A snapshot of a winding stack of particles frequently found in the
columnar phases is also shown (plate B).

Figure 11 Detail of a N = 8192 columnar sample at T ∗ = 1.37 showing two polar domains
formed by columns pointing upward (yellow), and downward (blue) with respect to
the local mesophase director.

Figure 12 Distributions of the number of domains nd with a given size, expressed as the number
of columns nc belonging to the domain itself, at T ∗ = 1.25 (C), T ∗ = 1.37 (C), and
T ∗ = 1.4 (N), from the MC–NPT simulations of the N = 8192 system.

Figure 13 Geometrical sketches of lateral (scheme A), and top (scheme b) views of the typical
boundary region separating polar columnar domains: an end–particle induces the
terminal molecules of three neighbouring columns to be antiparallel (and vice–versa).

Figure 14 Average radial correlation function g0(r
∗
end) (blue solid line), and orientational cor-

relation function S110(r∗end) between end–particles orientations (red short–dashed line),
and S101(r∗end) between particles and intermolecular vector orientations (black long–
dashed line), for the columnar sample at T ∗ = 1.3 (plate A). The local maxima of the
correlation functions are labelled according to the scheme B, where rend is the distance
between end–particles. To help in the visualisation, the short–range portions of the
orientational correlations is enlarged in the inset of plate A.

Figure A–1 A schematic cross–section of the uniaxial bowl–shaped particle (cut along the
vertical x = 0 plane), with length–to–width ratio l/w = 0.9, base–to–frame ratio
h/l = 0.4, and top conic angle θ = 34◦ used to define the contact distance function
whose approximation (as in Ref. [24]) enters into the generalised GB potential. The
three–dimensional steric dipole is obtained by a 2π rotation about the molecular z
axis. The Bezier control points qi are also shown (see Ref. [29]), and their positions
with respect to the molecular frame axes are given in Table A–1.
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