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ORDER PARAMETERS AND ORIENTATIONAL DISTRIBUTIONS
IN LIQUID CRYSTALS

C. ZANNONI
Dipartimento di Chimica Fisica ed Inorganica
Universita’

Viale Risorgimento, 4
40136 BOLOGNA, ITALY

Orientational order parameters are introduced as expansion coefficients of the sin-
glet orientational distribution in a suitable basis set. The construction of approx-
imate distributions from a limited set of order parameters using the maximum
entropy principles is discussed. We treat in detail order parameters and distribu-
tions for three cases: rigid molecules with cylindrical or biaxial symmetry and non
rigid molecules with one internal rotor.

1. INTRODUCTION

The description of orientational order plays an important role in the investigation
of anisotropic systems [1-3]. Its first objective consists in the identification of a set
of parameters that can characterize the mesophase of interest in certain thermody-
namic conditions. These parameters are generally called order parameters. They
are supposed to change as thermodynamical variables change and to be defined so
that at least some of them will become zero as we move from a lower symmetry
to a higher symmetry phase. For example in thermotropic liquid crystals the rele-
vant thermodynamic variable is temperature. As temperature increases we expect
a suitably defined orientational order parameter to decrease and to become zero in
the isotropic phase. It is not difficult to devise such an order parameter and indeed
this was done many years ago by Zwetkoff [4] who suggested

3
S=<§coszﬁ—-;->. (1)
In eq. 1 we have implicitly assumed the liquid crystal molecules to be cylindrically

symmetric objects as in the typical textbook picture (see, e.g. [5]). B is the angle
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between the axis of one of these objects and the preferred direction (the director)
taken as the laboratory Z axis. It is immediate to see that S varies between one
and zero as we go from a completely ordered system with all molecules parallel to
the Z axis to a completely disordered, isotropic phase. The first question we may
ask is if the description of the alignment offered by S is exhaustive. The answer
to this is in general no. For example we could envisage various different molecular
organizations leading to the same S. In one, clearly limiting, case all molecules
are distributed on a cone, so that they make a constant angle 8 = f;;;; with the
director. In the other case we have a fraction of molecules parallel or perpendicular
to the director in suitable percentage. In the third, and possibly more realistic
case for nematics, we have a continuous distribution of orientations, correspond-
ing once more to the same S. It is important to be able to distinguish between
these physically different situations and thus it seems clear that additional order
parameters will be necessary. One of our tasks here will be to discuss a way to sys-
tematically introduce these additional quantities. Another source of complications
in describing anisotropic systems arises when we consider molecules with lower than
cylindrical symmetry or, even worse, molecules with internal degrees of freedom,
where the identification of relevant order parameters becomes much more complex.
This will be briefly discussed in Sec. 5. As the number and variety of order pa-
rameters increase visualization becomes more difficult and extracting a picture of
the molecular organization becomes accordingly harder. We shall discuss how the
construction of molecular distributions compatible with a given set of order param-
eters according to maximum entropy principles can be of help in this visualization
as well as in some data analysis cases.

Here we are mainly interested in making contact with optical spectroscopy
studies such as absorption and, in another chapter in this volume, fluorescence.
These studies normally concern solute molecules dissolved in the anisotropic phase
in low concentration. Thus we shall be primarily concerned with single particle
properties and in particular with solute order parameters. On the other hand
the treatment we are going to describe will hold for order parameters relating to
the liquid crystal itself. "

To start with we consider that the molecules of interest are rigid. The ori-
entation of each rigid particle can be specified in terms of the set of Euler angles
w = (a,B,v) defined following Rose [6] convention. For a uniform system, like
an ordinary isotropic fluid or a nematic, physical properties are invariant under
translation. Thus, as long as we are interested in single particle observables, we
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only need to worry about the orientational distribution f(a,,v) which expresses
the probability of finding the molecule at (a, 8,) {7]. Indeed this can be used to
express any single particle orientational property A(a, §,7)

<Ale, B,q) >= fdasinﬁd.ﬂd”r f(a,ﬂ,'v)A(a,ﬂm)’ @)
f dasin BdBdy f(e, 8,9)

where the angular brackets indicate an average. The distribution is of course un-
known, but at least some constraints imposed upon it by symmetry can nevertheless
be taken into account. For example we know that experiments, at least in a ne-
matic and in a smectic A, are consistent with a uniaxial symmetry of the mesophase
around the director [1-3]. If we choose this direction as our Z axis this means that
rotating the sample about Z no observable property will change. Thus the proba-

bility for a molecule to have orientation (a,8,) should be the same whatever the
angle a . More concisely

with the normalization condition

~ 2r
[ assing [ avrip,m) =1. (4)
0 0

It is clear that if the molecules have more complex structures, e.g. if they have
internal degrees of freedom the treatment will need to include extra variables and
will become more complicated [8]. We shall see later on one such example for
rotameric molecules. For now we shall keep to the assumption of rigidity and treat
in detail the case of uniaxial and biaxial particles.

2. CYLINDRICALLY SYMMETRIC MOLECULES

At this simplest level the molecules of interest are considered to possess uniaxial
symmetry. If these molecules are unable to distinguish head from tail we should
have

f(B) = f(x — B). (5)

For nematics this corresponds to the experimental finding that turning the aligned
sample upside down no observable property changes. The situation may be dif-
ferent, e.g in monolayers, where an asymmetry exists. The first thing we can do
to identify a set of parameters that we can use tn lieu of f(3) is to expand the
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distribution in a basis set orthogonal when integrated over sin 8df . Such a set of
functions is that of Legendre polynomials [9] Py (cos ) , for which we have

x ] 3 2
/; dBsin B Pr(cos B) Py (cos B) = (2L—+1TSLN. ()

The explicit form of the first few Legendre polynomials is

Po(cos B) = 1, (7.0)
Py (cos B) = cos B,

Pa(cos f) = 3 cos? f — 3, (7.0)
Py(cos ) = g cos® B — g cos 3, (7.d)
Py(cos ) = 3 cost f - Seos? i+ .. (T.e)

As we see from these first few examples, Legendre polynomials are even functions
of cos f if their rank L is even and odd functions if L is odd [9]. Thus

Py (cos B) = (=)L Pr(—cos B). (8)
Since

cos(r — B) = —cos B, 9)

we shall only need to retain even L terms when expanding the distribution f(8),
even in cos § (see eq. 5 ), in terms of Py (cosB) . Thus we can write

f(B) = i fLPr(cosB) ;L even. (10)

L=0

The J—th coefficient in the expansion can be easily obtained using the orthogonality
of the basis set. Multiplying both sides of eq. 10 by P;(cos 8) and integrating over

sin fdg :
/”dﬂsinﬁf(ﬂ)PJ(cos g) = Z fL /: dfsin 8 Pr(cos B)P;(cos ), (11)
0 L=0

we find the coefficients in eq. 10 as

fi= (2J2+ ) <P;>, (12)
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Figure 1 . The orientational distribution f(8) corresponding to < P; >=0.6 as
obtained from the orthogonal expansion truncated to second rank (dashed line)
and from the maximum entropy procedure (continuous line).
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where we have used the notation
<Py >=/ dfsin B P;(cos B) f(B). (13)
)

The knowledge of the (infinite) set of < P; > would completely define the
distribution. The Legendre polynomials averages < P; > thus represent our set of
orientational order parameters. We can write

f(B) = %+g <P;> Pz(cosﬁ)+g < Py> Py(cos ) + ... (14)

The first non trivial term contains the second rank order parameter

<P2>=<gcoszﬂ—-%>, (15)
which corresponds exactly to the S order parameter introduced by Zwetkoff [5]
(see eq. 1 ). It is worth stressing that eq. 10 is exact as an infinite expansion,
but that in practice it does not give a very good approximation to f (8) when we
truncate to the first few terms. For instance if we have < P, >= 0.6 then f(8),
as given by the orthogonal expansion truncated at P,, is shown in Fig. 1 as the

dashed line. We see that f(8) constructed in this way can even become negative,
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which is certainly unphysical when we think that f(8) is a probability. Notice that
any property depending only on < P; > is calculated correctly using this f(B).
However, < P4 > and the higher order parameters calculated with the second rank
approximation are zero, because of the orthogonality of the Legendre polynomials.
Thus the orthogonal approximation is exact for terms that we have included but
very bad if we want higher terms.

2.1. Exponential approximation

The problem of finding the best, in the sense of least biased approximation
to the whole f(f8) or in general f(w) starting from a knowledge of a set of order
parameters < Py >, say up to rank L’ , can be approached using Information
Theory [10-11]. In this approach the most probable distribution is defined as that
maximizing the entropy associated with the usual thermodynamic - like formula

S(ex)) & = [ do f(w, {er}) In (v, {ar}) (16)

with respect to the set {az}. It has been shown using standard Lagrange multipliers
technique that the best distribution in this respect has the form [10-14]

¢

f(B) = exp{z ar Pr(cos §)}, (17)

L=0

where the coefficients a; are obtained imposing the constraint that the < Pp > ,
L =0,...,L’ calculated from f(8) have the known values. In particular we have the
normalization condition < P, >= 1. The information theory approach is in a way
an a postertors one. It allows constructihg an approximate full distribution from
available information but on the other hand it can make no prediction on what the
distribution will be at, say, a different temperature. The approach also does not say
anything on the molecular origin of the distribution itself. It is a way of translating
the experimental information into the most probable distribution compatible with
the data themselves. As more and more order parameters or in general observables
become available the estimate of f() can be refined. The method does not rely on a
priors assumptions and as the number of terms increases the sequence of maximum
entropy approximations converges to the true one [15]. It is also important to
stress that at any level of approximation the distribution obtained is positive and
of exponential character. It may be worth discussing in some detail the differences
between the orthogonal and the maximum entropy approximations.
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Figure 2 . The maximum entropy parameter a, defining the distribution in eq.18
plotted against < P; > (continuous line). We also show the simple analytic approx-
imation a; = 5 < P, > as the dashed line.

2.2. Examples

We now consider briefly what inferences can be made about the molecular
organization starting from a knowledge of a small number of order parameters and
in particular of < P>, < Py >.

2.2.1. Knowing < P> > only To start with we suppose that only the second rank
order parameter, < P; >, has been determined. The maximum entropy distribution
associated with this < P, > will be

explaz P;(cos §)]

= 18
/(8) fo dBsin B explaz Pz(cos )]’ (18)
with a; determined by the condition
<Py>= fo’r df sin 8 P;(cos B) exp|az Pz2(cos §)] . (19)

o dBsin B exp[az P;(cos B)]

Eq. 19 can be solved for a; in terms of < P, >. In Fig. 2 we show the resulting
curve for positive < P, > as the full line. We see that for positive < P, > the
distribution is peaked at 8 = 0, so that the majority of molecules will be parallel
to the director. This is normally the case when we dissolve an elongated molecule

in a nematic.




64

It is sometimes useful to quickly extimate a; from < P, > without having to turn
to a computer. We can expand a; in a power series in < P, > obtaining [16]

25 425
a3 =5<P;> —7 <P2>2 +"z§° <P2>3
51875 4 , 1419625
- —_— — < P> .. 20
3773 27 <> (20)

49049

The series is of course divergent at < P; > =1 but it can still be useful for order
parameters to be realistically found in nematics. In Fig. 2 we show as the dashed
line the very simple approximation

a3 =5<P,>. (21)

Eq. 21 is useful to get a good idea of a; and thus of the distribution at least up to
<P;>=0.6. Having determined a2 we can immediately plot the distribution f(8).
For example, if we assume < P, >= 0.6, like in the previous section, we obtain the
approximate distribution obtained from maximum entropy as the continuous line
in Fig. 1.

We notice that a; becomes negative as < P, > changes sign and that the
corresponding distribution becomes peaked at § = I. Physically this will normally
happen when we study a disk-like molecule dissolved in a nematic, since in this case
the molecular Z axis (the disk axis) is preferentially aligned perpendicular to the
director.

2.2.2. Knowing <P>> and <P,> We now turn to the case where both < P, >
and < P, > have been determined. The first thing we might try is to test if the
distribution eq. 18 obtained using just the information on < P, > is consistent
with the observed < P, >. Thus we would use the distribution generated by the
az gotten from < P, > and calculate the fourth rank order parameter < P4 > by
integration. The curve obtained is shown in Fig. 3 as the continuous line.

A simple approximate analytic form for this relation can be obtained expanding
< P4> in powers of a3 and substituting eq. 20 . This gives

5 s 200 3 .
=2 _= 2 < Py>t .. 22
<SP >=3 <>t - <P >0 4 <Py >t (22)

The series contains large terms of alternating sign and is poorly convergent unless
terms are properly grouped together. The very simplest approximation [16] retains
just the first term, i.e.

5
< Py>= 7 <P2>2, (23)
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Figure 3 . The fourth rank order parameter < P, > vs. < P, > as obtained from
the purely second rank distribution eq. 18 (continuous line). We also show the
approximate analytic expression < Py >= % < P;>? (dashed line).

and is actually a good approximation up to < P; >= 0.6 as we see from the dashed
line in Fig. 3 . When < P,> does not fall on the curve in Fig. 3 we can construct
a distribution like eq. 17 with L = 0,2,4. To do this we have to find a; and a4
from our given < P, > and < P,>. The first thing to observe is that the domain of
the functions as(< Py >, < Py >), a4(< P, >, < Py>) consists of the set of allowed
values of <P, >,<P4>. It is not difficult to show, using Schwarz’ s inequality [9]
that

<cos?f>? < <cos?B>< <cos? B> . (24)

The explicit form of P; and Py, eq. 7 , together with these inequalities yields [17]

35 5 7 5 7

— P> < P> = <<P> < — <Py> 4. 25

18< 2 > 9< 2 > T «> = 15 2 +12 (25)
These two inequalities define the region of space where possible values of < P >,
< P4 > consistent with their respective trigonometric form should lie. It goes
without saying that it makes sense to check that experimental values do fall within
this area. The determination of az, a4 can be carried out in general by solving the

non linear system
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Figure 4 . The exponential coefficients a; (a) and a4 (b) in the distribution
f(B) « explazPz(cos B) + a4 Py(cos f)] shown as a function of < P; > and < Py >
[18].

fo dBsin P (cos B) explaz Pz(cos B) + a4Py(cos B)]
fo’r df sin 8 explaz P2(cos 8) + a4 Py(cos §)] ’

fo" dg sin P4 (cos ) exp[az P2(cos ) + a4 Py(cos B)]
Jo dBsin B explaz Pz(cos B) + a4 Py(cos B)] '

<Py>= (26.a)

<Py>=

(26.5)

The results we obtain [18] are shown in Fig. 4 . Notice that, although we
expect < P, > greater than < P, > as it was the case in the P, distribution (see
Fig. 3 ), a range of solutions exists also for < P4 > greater than <P, >. Indeed an
interesting case is that of < P> > < P; >, with the values falling on a curve like the
continuous one in Fig. 5 . This unusual behaviour has been found to be consistent
with fluorescence depolarization data of diphenylhexatriene in DPPC and DMPC
membrane vesicles {19]. In turn the behaviour agrees with that predicted by a
model with pure Py effective potential [20], which gives a distribution

CQQP‘ (COS ﬁ)

J dB sin B expla Ps(cos B)] (27)

f(8) =
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Figure 5 . The dependence of the fourth rank order parameter < P4 > on the second
rank one < P; > for a purely fourth rank distribution eq.27 (continuous line). We
also show the analytical approximation in eq. 32 (dashed line).

We wish to obtain also for this limiting case a simple approximation to the < Py>
vs. < P; > curve. We start by Taylor expanding the expressions for < P, > and
<Ps> ,ie.

f01r dBsin S Py, (COS ﬂ) ¢34 Pa(cos B)
JT df sin Bes4Pulcos B)

<Pp>= , L=2,4, (28)

with respect to a4. This provides the first few terms as

10a2  10a3 1010a4 83990a®
<Py>=—"4 4 4 _ 4 L. 29
2 693 + 3003 + 26189163 909431523 Feen (29)

ay 9a%2  1367a3 457a} 11977672943
<Py>=— - 30
* o T 1001 ~ 1378377 ' 2000907 ' 5426577897741 (30)

Reversion of the series for < P4 > gives a4 in terms of < P4 >

6561 < Py >2 273458673 <Py >3
- _ " 31
@ =9<Py> 001 T 17034017 + (31)

Then we get < P2 > in terms of < P4> and by further reversion
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Figure 6 . The angular variation of the distribution f(8) « exp[aqP4(cos )] with
a4 = 2.

7 L 69 7794479 N
<Pi>=4\— <Py>3 —— < Py>+ <Py>3 +... 32
17= Vg0 =2 260 <2~ TTootte0v0 20 T (32)

This simple power series in /< P; > gives a good representation of the curve
for <P;> up to 0.9. In Fig.5 we show the analytical approximation to the <Ps>
vs. < P> curve from the truncation in eq.32 (dashed line) and the curve obtained
by direct numerical integration (continuous line). Using eq. 32 it is quite easy to
test if a set of < P>, < P,;> values has a pure P4 behaviour. An example of pure
P, distribution is plotted in Fig. 6 . Notice that the probability shows a maximum
not only for molecules parallel to the director, but also a smaller one for molecules
perpendicular to it.

3. NON-CYLINDRICAL MOLECULES

3.1. Identification of order parameters

In the last Section we have gone into some details in treating cylindrically
symmetric objects. This will now allow us to skip some explicit steps, since the
logic here is the same, even though the algebra is somewhat more complicated. To
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start with we notice that when the rigid molecule of interest, which we still assume
to be dissolved in a uniaxial phase, cannot be assimilated to a rod like or a disk like
particle, we need an extra angle in deﬁning its orientation. Thus if 3, is the angle
between the Z axis of the particle and the director, the extra angle, v is an angle
of rotation around the molecular Z direction [6]. The probability of finding the
molecule at a specific orientation , f(3,4), can be expanded like any other function
of the two Euler angles 3,, in a complete basis set of spherical harmonics. Thus
we get

£(8,7) = fLnDE.(8,7), (33)
L,n
where we have chosen the Wigner matrix notation D, (8,7) [6]. Orthogonality of
the basis set immediately permits identifying the coefficients f1 , and obtaining

£(8,7) = 5_‘, Z (2L + 1) <D§y > D§,(8,7) (34)

L=0n=-L

The set of averaged Wigner orientation matrices < D, > allows a complete char-
acterization of f(8,4). The generally complex quantltles < DE, > are called ori-
entational order parameters [see, e.g. 8, 21]. The complex conjugate of a Wigner
function is DL} (w) = (=)™ "DZ%,,_,.(w). Since the distribution f(3,4) is real,
then

<D >= ()" <DE,>, (35)

and the number of independent quantities is correspondingly reduced. At second
rank level, L = 2, there are at most five independent order parameters < D3, >
The five order parameters could also be chosen as the independent components of
the cartesian ordering matrix S first introduced by Saupe [22]

<§sin2ﬂcosz'7—%> < sin? ﬂcos'ysin'y> < sinfBcosfcosy >

S=| <sin?Bcosysiny> < &sin®Psin®y-1> <smﬂcosﬂsm'y>

< sinficosBcosy > <smﬂcosﬂsxn7> < £ cos""ﬂ—l >
(36)

The matrix is traceless and symmetric. Results can be easily converted from the
Saupe to the Wigner rotation matrix form {7]

Szz — Syy = V6 Re <D3, >, (37.a)
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3
Szy = —\/; Im < D2, >, (37.b)
3 2
Ses = — 2 Re < Dg, >, (37.¢)
3 2
Sys =[5 Im <D}, >, (37.d)
Ses =<D3,>. (37.¢)

We call ordering matrix frame the principal axis system of S, possibly obvious by
symmetry, where S is diagonal.

It should be stressed that other equivalent formulations can be given to the
problem of describing orientational order. A set of second rank ordering constants
particularly used in optical spectroscopy [23] is the set of orientation factors

K.y =<(Z-a)(Z-Db) >, a,b=1z,y,z, (38)

where a, b are unit vectors that can be parallel to the x, y or z molecular axes and
Z is along the director. For instance K, , =<cos? 8>. The K and S are simply
related
3 1

Sa,b = '2' a,db — '2'6a,b- (39)
The cartesian formulation can be extended to higher ranks both for the S matrices
[7] and orientation factors [23] although it becomes progressively more complicated
than the spherical one as the rank increases. Whatever the formalism used the rele-
vant order parameters for molecules of a certain point group can be listed. A fairly
general treatment of the allowed order parameters for various molecular symmetries
has been given elsewhere [7]. In practice, in a great number of practical cases, the
assumption is made that the molecules of interest are biaxial particles. This case,
which includes many molecules of interest in optical studies, e.g. perylene, pyrene

etc. will now be discussed in some detail.
3.2. Biaxial molecules

We wish to list the explicit trigonometric form of the first few relevant Wigner
rotation matrices in the description of biaxial objects. First we choose our molecular
frame axis along the three C; axes. Since we can turn our biaxial particle upside
down without changing anything we only need to retain in eq. 34 functions that are
invariant for this transformation. Remembering {6, 7] that the spherical harmonics
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D§,,(B,~) are multiplied by (=) under the same operation, we see that we only
need to expand in Wigner rotation matrices with even rank L. The first few are

Dgo(B,7) = 1, (40.0)
Dgo(8,7) = Pa(cos B), (40.b)
D3.2(8,7) = \/g sin® Be¥*27, (40.¢)
D%,(8,7) = Pa(cos B), (40.d)
D§12(B,7) = V10{14 cos® g — 14 cos* g— + 3 cos? g-}sin2 -g-e*"", (40.¢)
D¢14(B,7) = VT0cos* gsin‘ ge*“” (40.1)

Since the principal frame of the ordering matrix is determined by symmetry, at
second rank level there are two relevant order parameters, < D2, >, Re < D32, >
or, e.8. Szzy Szz — Syy. While < D%, > measures the alignment of the z molec-
ular axis with respect to the directpr, as we have seen for cylindrical molecules,
Re < D32, > is a biaxiality parameter. It provides the difference in ordering of the
z and y axes for the molecule in that liquid crystal solvent and at the given ther-
modynamic conditions. A perhaps more immediate interpretation can be obtained
by constructing approximate molecular distributions consistent with a given set of
order parameters.

3.3. Maximum Entropy Distributions

If a set of order parameters < D, > is known, the best distribution compatible
with them is, according to Information Theory [11]

f(8,7) =exp ) ar,nDE, (8,7), (41)
L,n
where the coefficients a, ,, are obtained solving the non linear system of consistency
constraints
w 2r
<Df. >= /; dfsin ./0 dv D&, (8,7) exp Z ar,nD&.(8,7), (42)
L,n

and ag o from the normalization constraint <.DJ,>= 1. For a biaxial solute where
<D32,> and Re < D32, > are determined, we have simply

exp a[Pz(cos B) + £ReDZ;(8,7)]

: 43
fo’r dfsin S foz’r dv exp a|P;(cos B) + £ReD2,(8, )] (43)

f(B,7) =




72

f02)

0.8

\Figure 7 .. An example of orientational distribution f(8,~) for a biaxial molecule
with < P, >= 0.4 and Re < D2, >= 0.1(a) or —0.1(b).

with @ = a0, £ = az,2/az20. The parameter ¢ is a measure of deviation from
cylindrical symmetry, since it is zero for the special case of uniaxial molecules. To
illustrate the interplay between order parameters and distributions, we show in Fig.
7 a few examples of distributions corresponding to elongated biaxial objects with
<P;>=0.4 and Re < D%, >= +0.1.

In Fig. 8we show a similar distribution for plate - like biaxial particles. In
this case the particle has a greater probability of having the 2 axis perpendicular
to the director, with the plate plane tending to be aligned parallel to the director.
The sign of the order parameter tells us which of the two axes in the plane is most
aligned.

It is interesting to notice that biaxiality effects are somewhat magnified for
oblate molecules. If we remember that

3
Re <D}, >= \/; < sin? B cos 2v >, (44)

we see that for a rod like molecule as the alignment increases £ is on average more and

more approaching zero and the same will do sin? 8 and ultimately Re < D32, > itself.

On the contrary for an oblate like molecule, 8 in a similar situation approaches 7

and sin? B approaches 1, thus allowing the 4 dependence to emerge.
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Figure 8 . An example of orientational distribution f(8,7) for a biaxial molecule
with < P; >= —0.2 and Re < D3;>=0.1 (a) and —0.1 (b).

Notice that here we have no means of knowing if £ is a molecular property or
not. The maximum entropy formalism just converts order parameters in distribu-
tions, without offering a molecular interpretation to what is observed. However,
eq. 44 is formally identical to that obtained with Mean Field Theory, e.g. starting
from a dispersion interaction [24]. In that case, the parameters a, § do indeed have
a molecular interpretation. For dispersion forces £ = 2), where A is a molecular

constant
3 -
A= \/t Qzz — Qg (45)
2 20!,3 - azz - ayy

expressing the deviation from cylindrical symmetry of the solute polarizability c.
Curves of Re <D32;,> vs. < D2, > or equivalently of Szz — Syy Vs. Szz at constant

¢ are often used when analyzing experimental data [25]. In Fig. 9 we see such a
family of curves.

We shall now try to find some approximations for the biaxial order parameters
calculated for integration over the distribution in eq. 43 . To do this we consider §
fixed and start with an expansion in terms of a. The first few terms are

(62-2) , (£+2) 3 3¢ +2§ 4

BT a 350 a® + 1525 a*+..., (46)
4 2 _

3 _e_az_(£3+2£)a3+3e +12¢2-20 4

2 _— —— —
Re <Do2>= 715%™ 35 700 7700

1
<Py>= ga—'

(47)



74

0.0 0.2 0.4 0.6 0.8 1.0
<P,>

Figure 9 . A plot of the order parameter Re < D3, > vs. < D3, > for the biaxial
distribution in eq.43 and for £ = 0.2 (a), 0.4 (b), 0.6 (c) as calculated by numerical

integration (continuous lines) and from the approximate analytic expansion eq.48
(dashed lines).

Eliminating a between the last two equations and regrouping we find

5¢% — 2¢
28
25¢£5 —130¢3 + 174¢
+ 196

Re <D32>=<Pz>(<Pz>—1)2{§—+ <P;>

<P;>%4..} (48)

We see that the performance of the simple eq. 48 as the dashed lines in Fig. 9 is
quite reasonable throughout the range and very good for order parameter < P, >
up to 0.6 — 0.7.

3.4. An example

In [26] we have determined through NMR the order parameters for pyridine in
various nematic solvents and in particular in the commercial 4-cyano -4’-alkyl bicy-
clohexane mixture ZLI-1167 (Merck) and in 4- ethoxybenzylidene -4’- n-butylaniline
(EBBA). The results for the second rank order parameters in the two solvents at
different temperatures are shown in Fig. 10. The molecular coordinate system
assumed has the z axis perpendicular to the pyridine plane and the y axis going
through the positions of the nitrogen and of the para-hydrogen.
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Figure 10 . The second rank order parameters Re < D3, > = (Szz — Syy)/ V6
vs. < P; > for pyridine dissolved in the nematics EBBA (squares) and ZLI-1167
(triangles) [26] .

We see that the behaviour in the two solvents is quite different, so that order
parameters are in general solute - solyent rather than just solute properties. While
on one hand this represents a source of complication, it also offers an interesting
handle toward probing specific interactions in the fluid phase [26]. The construc-
tion of distributions corresponding to these different situations can help in making
sense of what the most probable orientation is. As an example we show in Fig.11
the probability distributions for pyridine in ZLI-1167 at the lowest temperature
employed. A similar plot for pyridine in EBBA hardly shows a dependence on the
angle v because of the small biaxiality values (cf. Fig.10 )-

4. EXPERIMENTAL DETERMINATION: LINEAR DICHROISM

All what we know about ordering has eventually to be obtained experimentally.
Typically an experiment consists in performing measurements of anisotropy on a
suitable tensor property. For example the absorption of light by a solute relative to
a certain electronic transition is determined by the transition moment u [23]. If we
assume for simplicity to deal with a single transition from a state with wave function
3; to a state t; then the transition dipole moment is the matrix element between
these two states of the electric dipole operator M, ie pu= <¢,|M|¢, >. In general
there will be of course complications arising e.g. from overlapping transitions etc.
However, for our purposes here the transition moment can be considered as a vector
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Figure 11 . The probability distribution f(8, ) for pyridine in ZLI-1167 at < Py >=
—0.207, Re < D%, >= 0.0624.

with a well defined orientation in the molecular frame. The probability of absorption
of plane polarized light with a polarization direction e does not depend directly on
u but rather is

Pop, x< (e p)? >,
= Z < €a€blaltpy >,
a,b
=<E:A >, (49)
where we have introduced the polarization tensor [27]
E=eQe, (50)

containing all the experiment geometrical information and the absorption transition
tensor containing the molecular information

A=puQpu. (51)

Eq.51is useful because it stresses that we are really looking at a second rank tensor,
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not at a vector. The contraction operation E : A is defined as

E:A=)_ E.pAap. (52)

a,b
We could now measure absorbance parallel and perpendicular to the director and
try to relate it to order parameters. It is convenient to do this using spherical, rather

than cartesian tensors. In practice for second rank symmetric cartesian tensors this
can be done explicitly :

_ 1 o0_ 1 420, Y 422, 422
Axx = = A0 = —E AR 4 (AP 4 AN, (53.0)
—1
Axy = 7(A2'2 — AB7Y) (53.b)
1 _
Ax,z = E(Az’ 1 A%, (53.c)
_ 1 00 1 420 1,22 43,2
Aviy = = A0 = T = (A3 A, (53.d)
Ayz = %(,42»1 + AP, (53.¢)

1 2
Azz = -7_3,40’0 + \/;Am, (53.1)

where the so called irreducible components AL™ of rank L and component m have,
under rotation, the simple transformation properties

Ay = ZD (eB7) ArioLs (54)

with the LAB and MOL subscripts referring to the laboratory and rotated frame.
In particular the term A0 =—a/ v/3 , where a is the trace of A, is a scalar. Using
this formalism the measured absorption parallel to the director can be written as

< A" > =< Azz >LAB,

=—3—+[ ALAB >,
=—+ \/‘E<D AT (55)

Quite similarly the measured perpendicular component will be

<A >———\/'Z<D AR (56)




78

For a biaxial molecule the experimentally measurable anisotropy of < A > is

3
<AI>-<AL>= \/;{Ai’fm <Dfo> +2Re(A3%, <D¥>)} (57)

Thus the measurement of at least two anisotropy values is required to determine
both <D3,> and < DZ,> . Moreover the parameter of deviation from cylindrical
symmetry, < D2, >, only becomes measurable when the tensor A has an off axis
component so that A% # 0. If the molecule has effective cylindrical symmetry, in
the sense that < D2, >=< D3, > 6,0, then we have

< A" >—-< A, >
(Amor)) — (Amor) L’

<P;>= (58)
We should be aware of the fact that the order parameter < P, > measured for
a molecule dissolved in a liquid crystal is not the same as that of the pure lig-
uid crystal, since solute - solvent terms in the anisotropic potential acting on the
molecule are different from the solvent - solvent ones. This also means that except
special cases where the solute is very similar to the solvent, probe techniques give
information on the behaviour of solutes in anisotropic phases and thus only indi-
rectly report on the phase itself. While this has been perceived as a limitation of
these class of measurements, there is instead a lot of scope for learning about the
behaviour of interesting classes of molecules in liquid crystals.

The order parameters change with temperature and jump to zero at the ne-
matic - isotropic transition. This phase “transition is a weak first order one and
accordingly the order parameters present a small jump. Typical values for < P, >
at the nematic to isotropic transition are in the range 0.3-0.4. Order parameters
for different liquid crystals, when plotted against reduced temperature T' /T, with
Tnr the nematic - isotropic transition temperature follow fairly closely a universal
curve [3] . It is quite clear that in view of this and of the pronounced temperature
dependence it is advisable to compare order parameters for different molecules at
the same reduced temperature.

5. ROTAMERIC MOLECULES

We now wish to briefly mention how the present treatment of order parameters
can be generalized to molecules with internal degrees of freedom [8]. This is an
important problem because most molecules of practical interest [28, 29] including
molecules forming liquid crystals possess some internal flexibility . The problem
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has received attention by various authors [see e.g. 30- 31 ]. Here we shall only con-
sider one mechanism for internal flexibility, i.e. internal rotation, since this often
represents the most important mechanism to large changes in molecular structure.
Moreover, instead of giving a fairly general treatment, as we have proposed else-
where [8], we shall give a specific example, that of a molecule with one degree of
internal rotation [32]. The molecule we have in mind is made up of two rigid frag-
ments, e.g. two rings. The first thing we should worry about is the description of
the state of the particle of interest. Indeed the set of three Euler angles w we have
used until now is only sufficient to specify the state of a rigid fragment, e.g. it can
describe the orientation of a suitably defined molecular frame. When the molecule
has additional degrees of internal freedom more variables have to be introduced.
For a two ring molecule an angle ¢ giving the orientation of one ring with respect
to the other could do. Thus we can define an orientational - conformational state
w, ¢ by choosing a molecular frame M, on one molecular fragment and giving its
orientation w = (M; — L) with respdct to the laboratory frame and then giving the
angle ¢ that the second ring makes With the first one. We write the probability of
finding the molecule in a certain orientational - conformational state as the proba-
bility of finding the first fragment at orientation w with respect to the laboratory
director frame and the second fra,gnhent at an angle ¢ from the first, i.e. flw, @)
This one particle distribution is then expanded in a composite Wigner - Fourier
basis set. We have for a molecule dissolved in a uniaxial phase, where w = (8 )5

1(8,18) = oz Y (3L + 1)ffag D (6:7) exp(~ia) (59)

Lyinyg

where in general ¢ = 0,£1,£2,... and we have kept the notation used in 8].
The angle ¢, with 0 < ¢ < 2, is the dihedral rotation angle around the inter -
fragment vector connecting the two parts of the molecule. The orthogonality of
the basis functions immediately yields the expansion coefficients as

fglnq =< D(I)Jn (ﬂ’ '7) exP(iq‘ﬁ) > (60)
where the angular brackets denote a conformational - orientational average over
the distribution f(8,%,9). As we have seen in the previous sections the singlet dis-
tribution expansion coefficients are related to the order parameters for the system.
We have, as discussed in [8], three types of order parameters, i.e.

purely orientational

fC{JnO =<D(I;n(M1 - L) > (61)
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Figure 12 . The distribution probability of finding the thiophene ring at an an-
gle ¢ from the phenyl as determined for 3-phenylthiophene in the nematics PCH
(continuous line) and Phase IV (dashed line)[32] .

We have used the notation (B — A) to indicate the rotation from A to B, e.g. here
(M; — L) = w . This type of expansion coefficient is essentially an ordinary orienta-
tional order parameter for the molecular frame. It gives the average orientation of
the reference fragment of the molecule with respect to the director frame, whatever
the conformation.

purely internal
f(())Oq =< exp(igd) >;¢ =0,%1,+£2,... (62)

These parameters describe the ordering of the second part of the molecule with
respect to the first one irrespective of the overall orientation. They are quite impor-
tant since they can be considered expansion coefficients of the rotameric distribution
f(#) in the fluid obtained by integrating eq.59 over £, 7.

_ _J dpsinBdrf(8,7,9)
[ d¢ dBsin pd{(8,7,9)

The internal order parameters can be different from zero even in the isotropic phase
if there is some preferential orientation of the second fragment around the internal

f(¢) (63)

axis.
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Mixed internal - external order parameters These parameters arise when both L
and g are different from zero in eq.60 . They describe coupling between internal
and external degrees of freedom. A particular subset of these parameters allows
the recovery of purely orientational order parameters for the second sub-unit. The
maximum entropy method outlined earlier on can be generalized to yield the best
distribution compatible with a given set of order parameters. For instance if an
experiment determines a set of second rank order parameters fé‘nq , this distribution
will be of the form

£(8,7,8) = exp{D _ an;gDor (B, ) exp(igd)}, (64)

n,q

where the coefficients a,.; are obtained by minimizing the squared difference be-
tween the measured quantities and those obtained by integrating eq.64. The for-
malism has been recently applied to an analysis of the proton NMR spectrum of
3 - phenyl - thiophene in two nematic phases: PCH and Phase IV [32] . Using a
maximum entropy approach we have obtained from the experimental proton dipo-
lar couplings purely orientational order parameters for the two rings as well as an
approximate rotamer distribution. In Fig. 12 we show the results obtained for the
purely internal distribution f(¢) }giving the probability of finding the thiophene
at a certain angle with respect to the phenyl ring. We see that the distribution
changes in the two nematics, showing a solvent effect. We think that the study
of order parameters for flexible molecules promises to be an important field in the
investigation of environment effects on conformations.
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