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Abstract

The flexoelectric effect in liquid crystals is investigated by means of Monte Carlo simulations for model pear-shaped
molecules that interact through a combination of Gay–Berne and Lennard-Jones potentials. Flexoelectric coefficients are
evaluated from microscopic expressions derived on the basis of a density functional approach. q 1999 Elsevier Science B.V.
All rights reserved.

1. Introduction

w xThe flexoelectric effect in liquid crystals 1 con-
cerns the linear coupling of splay and bend director
deformations to an electric polarization. Flexoelectric
liquid crystal materials exhibit a polarization P pro-
portional to the orientational deformation of the di-
rector field n,

Pse n div nqe n=curl n , 1Ž .11 33

where e and e denote the flexoelectric coeffi-11 33

cients related to splay and bend distortions, respec-
tively. The phenomenon is somewhat similar to the
piezoelectric effect in certain solid crystals where a
coupling between mechanical stress and polarization
is observed, so that the polarization manifests itself
due to a positional deformation. The flexoelectric
effect has attracted a great deal of attention because
of its possible applications in transducers and, gener-
ally, in electro-optical devices. However, and more
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importantly here, there is also a fundamental interest,
as the relation between the flexoelectric coefficients
and molecular structure is far from being understood.

w xMeyer in his seminal paper 1 showed that a geo-
metrical asymmetry of the mesogen molecules, or
‘shape polarity’, should lead to a non vanishing
effect. He used as explicit examples wedge-shaped
Ž . Ž .‘pear’ and bow-shaped ‘banana’ molecules. These
are of course not the only molecular shapes allowing

w xthe effect and Prost and Marcerou 2,3 and Osipov
w x4,5 , in particular, have considered quadrupolar-like
flexoelectricity. From the theoretical point of view
microscopic theories of the effect have been devel-

w xoped at the molecular field level by Straley 6 and
w xOsipov 5 . A linear response formalism relating a

third rank flexoelectric tensor to correlations of torque
flux and polarization has been given by Nemtsov and

w xOsipov 7 . Rather surprisingly, investigations in
terms of computer simulations are not yet available.
Here we address the problem of relating molecular
shape and flexoelectricity by Monte Carlo simula-
tions, introducing a simple model of pear-shaped
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molecules built from a Gay–Berne and a Lennard-
Jones center. This will allow us to change easily and
in a controlled way the molecular shape asymmetry.
We also develop non mean-field microscopic expres-
sions for the flexoelectric coefficients in terms of
suitable averages over the direct pair correlation
function, thus generalizing the approach by Straley
w x6 . Finally, we estimate these coefficients from sim-
ulation results.

2. Microscopic expressions for flexoelectric coeffi-
cients

We start writing the distortion induced polariza-
tion P as an average of the molecular steric dipoles
p sp u , of strength p, over the orientational distri-i i

Ž . Ž .bution function ODF , f u , of the molecular axesi

u ,i

Psr p du f u uŽ .H i i i

sr p du f u d f u u , 2Ž . Ž . Ž .H i 0 i i i

where r is the number density and we have assumed
Ž .that f u can be expressed by its uniaxial equilib-i

Ž .rium feature, f u , which is altered by a slight0 i
Ž . Ž . w xperturbation d f u , i.e., fs f 1qd f 6 . Accord-i 0

w xing to Straley 6 , this perturbation can be determined
by variational calculus from the functional derivative
of the total free energy, giving

d f u sr d r du c r ,u ,u r P=Ž . Ž .ˆ Ž .Hi i j j i j i j i j

=f u . 3Ž . Ž .0 j

Ž . Ž .In Eq. 3 c r ,u ,u is the direct pair correlationi j i j
Ž .function DPCF which depends on u , u and oni j

the separation vector r of a pair of molecules. Thei j
Ž .gradient of f in Eq. 3 can be expressed by0

director gradients when assuming that the distribu-
w xtion is locally at equilibrium 8 . This means that the

orientations of the molecular axes follow the local
Ž . Ž Ž . .director, and hence f u s f n r Pu . Following0 j 0 j

w xe.g., Ref. 8–10 , the DPCF does not contain a
director dependence. This is compatible with a sys-

tem where the local uniaxial director is isotropically
distributed for a sufficiently large sample or, equiva-
lently, fluctuates in time to maintain the overall
isotropic symmetry, appropriate in the absence of a
symmetry breaking field. For further considerations

Ž .we choose the local coordinate system at point r so
Ž . w xthat n r sz and u lies in the xz plane 6 . By thisˆ j

simplification the gradient of the ODF can be ex-
pressed as

=f n r Pu s f X cosb uŽ . Ž .Ž .0 j 0 j j , x

= SS xqTT yqBB z , 4Ž .ˆ ˆ ˆŽ .
where SS , TT, BB are the amplitudes of splay, twist

XŽ .and bend distortions, respectively, and f cosb0 j

denotes the derivative of the uniaxial ODF with
Žrespect to its argument b is the angle betweenj
. Ž .molecule j and the director . Inserting Eqs. 3 and

Ž . Ž .4 in Eq. 2 we obtain the microscopic analogue of
Ž .Eq. 1 and by comparison we can find the expres-

sions for the flexoelectric coefficients:

e sr 2 p d r du du f cosb uŽ .H11 i j i j 0 i i , z

=f X cosb u r c r ,u ,u , 5Ž . Ž .Ž .0 j j , x i j , x i j i j

e sr 2 p d r du du f cosb uŽ .H33 i j i j 0 i i , x

=f X cosb u r c r ,u ,u . 6Ž . Ž .Ž .0 j j , x i j , z i j i j

The structure of these expressions is similar to the
w xPoniewierski–Stecki expressions 8,9 which estab-

lish a microscopic route to the Frank elastic con-
w xstants 11 . In our approach the flexoelectric coeffi-

cients arise from averages over molecular pair corre-
Ž . Ž .lations. In order to use the expressions 5 and 6 for

practical calculations we have to perform the re-
Ž .quired averages. To do this we expand f u and0 j

Ž .c r ,u ,u in spherical harmonics, Y . The expan-i j i j L,m
w xsion of the DPCF reads 12

c r ,u ,u s c rŽ . Ž .Ýi j i j L , L , L i j1 2
L , L , L1 2

m ,m1 2

=C L , L , L;m ,m Y uŽ . Ž .1 2 1 2 L ,m i1 1

=Y u Y ) r , 7Ž . Ž .ˆŽ .L ,m j L ,m qm i j2 2 1 2
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Ž .where C L , L , L;m ,m denotes Clebsch–Gordan1 2 1 2

coefficients and the expansion coefficients,
Ž .c r , only depend on the intermolecular dis-L , L , L i j1 2

tance r . For a uniaxial phase of uniaxial moleculesi j

the ODF can be expanded in Legendre polynomials,

2 Lq1
² :f u s P P cosb , 8Ž . Ž .Ž .Ý0 j L L j4pL

where the expansion coefficients are the order pa-
² :rameters, P , which measure the degree of orien-L

tational order in the sample. We note that for
molecules with ‘shape polarity’ L , L and L in Eqs.1 2
Ž . Ž .7 and 8 can assume not only even, but all integer

Ž . Ž .values. When introducing the expansions 7 and 8
Ž . Ž .into Eqs. 5 and 6 we are able to perform analyti-

cally all the solid angle integrals over the spherical
w xharmonics 12 . Furthermore, from the symmetry

properties of the Kronecker symbols and the Cleb-
w xsch–Gordan coefficients 12 the multi-summations

can be reduced to single series expansions. The
splay flexoelectric coefficient then reads

2p Lq1 !Ž .
2e s r p 2 Lq1Ž .( Ý11 (3 Ly1 !Ž .L

= 3( 2 Ly1 C Ly1, L,1;0,1 IŽ . Ž .½ Ly1, L ,1

=
2 ² : ² :C Ly1,1, Ly2;0,0 P PŽ . Ly2 L

2 ² : ² :q C Ly1,1, Ly1;0,0 P PŽ . Ly1 L

2 2² :q C Ly1,1, L;0,0 PŽ . L

3(q 2 Lq3 C Lq1, L,1;0,1 IŽ . Ž . Lq1, L ,1

=
2 2² :C Lq1,1, L;0,0 PŽ . L

2 ² : ² :q C Lq1,1, Lq1;0,0 P PŽ . L Lq1

2 ² : ² :q C Lq1,1, Lq2;0,0 P PŽ . 5L Lq2

222 3 3' ' ² :s 2p r p 2 I q I PŽ .0,1,1 2,1,1 15

23 ² : ² :yI P q2 P q PPP , 9Ž .Ž .1,2,1 2 2

whereas the bend flexoelectric coefficient becomes

2p Lq1 !Ž .
2e s r p 2 Lq1Ž .( Ý33 (3 Ly1 !Ž .L

= 3'2 Ly1 C Ly1, L,1;1,y1 IŽ .½ Ly1, L ,1

= C Ly1,1, Ly2;0,0Ž .
= ² : ² :C Ly1,1, Ly2;1,y1 P PŽ . Ly2 L

qC Ly1,1, L;0,0Ž .
=

2² :C Ly1,1, L;1,y1 PŽ . L

'q 2 Lq1 C L, L,1;1,y1 C L,1, L;0,0Ž . Ž .
= 3 ² :2C L,1, L;1,y1 I PŽ . L , L ,1 L

3'q 2 Lq3 C Lq1, L,1;1,y1 IŽ . Lq1, L ,1

= C Lq1,1, L;0,0Ž .

= ² :2C Lq1,1, L;1,y1 PŽ . L

qC Lq1,1, Lq2;0,0Ž .
= ² : ² :C Lq1,1, Lq2;1,y1 P PŽ . 5L Lq2

232 3 3' ² :s 2p r p y I P q I2,1,1 1 1,2,15

=
2² : ² :y P q P q PPP , 10Ž .Ž .2 2

where

I 3 s d r r 3 c r 11Ž . Ž .HL , L , L i j i j L , L , L i j1 2 1 2

denote radial integrals of the third moments of the
DPCF expansion coefficients. Similar series expan-

Ž . Ž .sions as 9 and 10 , based upon the Poniewierski–
w xStecki expressions 9 allow the evaluation of the

w xFrank elastic constants 13,14 . Unlike the flexoelec-
tric coefficients derived above, the elastic constants
turn out to depend on the fourth moments of the
DPCF.

3. Monte Carlo simulations for pear-shaped
molecules

Ž .In order to evaluate the general expressions 9
Ž .and 10 we need to insert data for the scalar order

parameters and the DPCF. We obtain these quantities
by performing Monte Carlo simulations for a particu-
lar model of pear-shaped molecules. The ‘shape
polarity’ is achieved by combining an ellipsoidal

Ž . w xGay–Berne GB 17 and a spherical Lennard-Jones
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Ž .LJ center which are rigidly connected. Thus in our
model each molecule consists of two sites, and there-

Ž .fore the total interaction U 1,2 between the pair of
molecules 1 and 2 is the sum of four contributions,

U 1,2 sU GB1,GB2 qU LJ1,LJ2Ž . Ž . Ž .

qU GB1,LJ2 qU LJ1,GB2 . 12Ž . Ž . Ž .

The two GB sites interact with the potential
Ž . w xU GB1,GB2 according to 18 , which is identical in

form to the original Gay–Berne potential function
Ž w xwith length-to-width ratio 3:1 see Ref. 17 for

. Xdetails , but with the parametrization ks3, k s5,
ms1, ns3, which exhibits a wider nematic range

w x Žcompared to the original version 17,18 . All physi-
cal quantities will be expressed in reduced units,
marked by an asterisk) , which are referred to the
energy and length units, e and s , of the GB0 0

w x .potential 17 . The standard 12-6 LJ potential is
Ž .used to model the interaction U LJ1,LJ2 between

the spherical sites. Whereas its well depth is kept
Ž ) . )constant at unity e s1 , the diameter s of theLJ LJ

LJ site is a parameter in our model that is varied in
order to change the molecular steric dipole. We
choose the two values s ) s1.0 and 1.1 and placeLJ

the Lennard-Jones sphere along the long axis of the
GB ellipsoid, so that their ends coincide, giving an
intramolecular site distance of d) s1.0 or 0.95,
respectively. Reasonably, the steric dipole moment

) Ž 4.p spr e s should increase with both the vol-0 0

ume of the LJ site and the GB–LJ intramolecular site
) Ž . ) ) 3 )distance as p s 4pr3 e s d . For our choiceLJ LJ

of parameters this definition yields, respectively, p)

Ž .s0.524 and 0.662. The last two terms in 12
account for the interaction between a GB and a LJ

w xsite. Their form has been derived 19 by generaliz-
ing to dissimilar particles the biaxial GB potential

w xdeveloped in 20 .
We have investigated the model of shape asym-

metry introduced above by employing Monte Carlo
simulations at constant pressure P ) sPs 3re and0 0

temperature T ) skTre for a system of Ns10000

pear-shaped molecules. Interestingly, when starting
w xfrom the nematic phase of the GB potential 18 at

P ) s7 and T ) s2.2, . . . , 3.5, the effect of the addi-
tional LJ center is to suppress the existence of this
phase, instead we find a direct transition from a
highly ordered smectic A phase to the isotropic

phase. When increasing the pressure a relatively
narrow nematic region can be found. Therefore we
performed the NPT Monte Carlo simulations at P )

s10 and various temperatures in the nematic phase
of our model. For each state point the simulation
runs consisted of at least 40 000 equilibration cycles,
followed by 120 000–400 000 production cycles.

To analyze the simulation data we have extracted
structural properties which, in turn, were used as
input quantities to evaluate elastic and flexoelectric
coefficients. In particular, the order parameters,
² : ² Ž .:P s P nPu , were evaluated according toiL L i

w xthe procedure developed in 21 . The full pair distri-
Ž .bution function PDF accounts for spatial correla-

tions of pairs of molecules in the sample, taking into
account the orientations of both their axes and their
center of mass separation vectors. Its orientational
dependence is analyzed most conveniently in terms
of an expansion into rotational invariant functions,
equivalent to the spherical harmonic expansion Eq.
Ž .7 . Here we use the definition of basis functions

Ž . w xS u ,u ,r introduced by Stone 22 . The fullˆL , L , L i j i j1 2

PDF is determined by the infinite set of Stone expan-
sion coefficients that can be calculated as

1
²S r s d r yrŽ . Ž .L , L , L i j i j 121 2 r

= :S u ,u ,r . 13Ž .Ž .ˆ 12L , L , L 1 2 121 2

Ž .We calculate all Stone functions 13 up to fourth
Ž .rank L , L F4 , even if the structure of the fluid is1 2

revealed already by the first and second rank func-
tions. Indeed, the lowest order at which all terms

Ž . Ž .enter the series expansions 9 and 10 is Ls4.
Analogous calculations of elastic constants show that
the fourth order theory is necessary to remove the

w xsplay-bend degeneracy 13,14 , thus providing more
² :realistic results. Whereas the order parameters PL

are directly accessible from the simulations, the
Ž .DPCF, c r ,u ,u , is related to the total pair corre-i j i j

Ž . Ž .lation function TPCF , h r ,u ,u , via the Orn-i j i j
Ž .stein-Zernike OZ integral equation,

2 Lq1
² :c r ,u ,u sh r ,u ,u qr PŽ . Ž . Ýi j i j i j i j L4pL

= d r du c r ,u ,uŽ .H k k i k i k

=P nPu h r ,u ,u . 14Ž . Ž . Ž .L k k j k j
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Table 1
Thermodynamic quantities and scalar order parameters according
to the Monte Carlo simulations. T ) and r ) are temperature and

² : ² :pressure, respectively. P and P denote the even rank2 4

orientational order parameters. The data include the nematic range
of the two model systems with molecular steric dipole p) s0.524
Ž . ) Ž .upper part and p s0.662 lower part

) ) ² : ² :T r P P2 4

2.95 0.286"0.001 0.788"0.013 0.506"0.021
3.00 0.284"0.001 0.768"0.015 0.457"0.026
3.05 0.283"0.001 0.733"0.019 0.428"0.032
3.10 0.281"0.001 0.712"0.017 0.367"0.021
3.15 0.279"0.001 0.682"0.023 0.346"0.026
3.20 0.278"0.001 0.670"0.023 0.317"0.023
3.30 0.274"0.001 0.543"0.047 0.187"0.035
3.40 0.267"0.001 0.058"0.040 0.005"0.015

3.10 0.274"0.001 0.691"0.018 0.393"0.024
3.15 0.272"0.001 0.663"0.020 0.334"0.018
3.20 0.269"0.001 0.523"0.067 0.304"0.018
3.30 0.264"0.001 0.186"0.028 0.035"0.028
3.40 0.262"0.001 0.074"0.043 0.001"0.014

Ž . Ž .In Eq. 14 the ODF f u is expressed by itsk
Ž .Legendre polynomial expansion 8 . The TPCF, h,

which is derived from the pair distribution function
Ž .PDF , g, as hsgy1, can be directly obtained
from simulations. Taking the Monte Carlo data for
the TPCF as an input, it is possible to obtain an
iterative solution for the DPCF. We start keeping

Ž .only Ls0 in the summation in 14 approximating
Ž . Ž .f u by its isotropic part 1r 4p , while retainingk

the full dependence on the molecular orientations in
the TPCF and DPCF. With this restriction the OZ

w xequation can be solved as shown by Blum 15 . We
applied this procedure according to the outlines given

w xelsewhere 16 . The resulting DPCF expansion coef-
Ž . Ž y6 .ficients, c r , decay to zero to OO 10 withinL , L , L i j1 2

the range of the intermolecular potential. Small longer
range fluctuations are neglected by restricting the

Ž .upper integration limit in 11 to the potential cutoff
Ž ) .radius r s5 . Ideally, the DPCF should be evalu-cut

ated at each temperature. However, unlike the TPCF,
the DPCF is expected to be only weakly dependent

w xon temperature 23 , thus we have preferred to choose
) Ž ) . ) Žonly T s3.00 for p s0.524 and T s3.10 for

) .p s0.662 , respectively, where the statistics of our
calculations is particularly satisfactory. In order to
check the validity of the isotropic approximation to

the OZ equation, we evaluated the convolution ker-
Ž .nel in 14 , inserting the TPCF and order parameters

from the simulations as well as the DPCF obtained
from the isotropic OZ equation. The convolution
integral was computed numerically first in the

Ž .isotropic approximation, keeping only Ls0 in 14 .
Afterwards, higher rank corrections were taken into
account. The corrections retaining terms Ls0,1,2
turned out to be less than 1%. Therefore we conclude

Ž . Ž .that neglecting the anisotropy of f u in 14 shouldk

have only a minor influence on our results.

4. Results

We start the analysis of the simulation results by
investigating the temperature dependence of the

² :scalar order parameters, P , for the two systemsL

of pear-shaped molecules with steric dipole p) s

Fig. 1. Averaged Stone rotational invariants corresponding to
temperature T ) s3.00 and steric dipole p) s0.524. Upper part:

Ž ) . Ž . Ž ) . Ž . Ž ) . Ž .S r solid , S r dashed ; lower part: S r solid ,101 i j 202 i j 110 i j
Ž ) . Ž .S r dashed .220 i j
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0.662 and p) s0.524. First of all, we mention that
Ž .the odd rank order parameters Ls1, 3 are almost

'zero, i.e., of order 1r N . This gives some hints
already that there is no mesoscopic polarization in
our system. We shall analyze this feature in more
detail later on. In Table 1 we present the even rank

² : ² :order parameters P and P . For both systems,2 4

the orientational order is decreasing with increasing
temperature until the isotropic phase is formed at
T ) s3.40. However, the molecules with the stronger
steric dipole are slightly less ordered in the nematic
phase, hinting that the molecular shape asymmetry
tends to reduce the degree of orientational order.
Moreover, it restricts the range of the nematic phase.
For temperatures below T ) s3.10, the system with
p) s0.662 clearly reveals a smectic layering. This
tendency could be confirmed by further calculations

Ž )with an even stronger shape asymmetry p s
.0.814 , for which the nematic phase vanishes com-

pletely.

In order to examine more thoroughly the molecu-
lar organization in the nematic phase, in Fig. 1 we

w xplot some selected rotational invariants 22 , corre-
sponding to p) s0.524 and T ) s3.00. The aver-

Ž ) . Ž ) .aged basis functions S r and S r pro-L,0, L i j L, L,0 i j

vide detailed information on the relative orientation
of molecular pairs. Here the nearest neighbour peaks
are of particular interest. Importantly, due to the
shape asymmetry of the pear molecules also the first
rank invariants are non-zero. Especially, we note the

Ž ) .positive values of the function S r , indicating1,1,0 i j

that neighbouring molecules prefer to align antipar-
allel. Such molecular organization, as stated above,
leads to vanishing odd rank order parameters and
prevents the formation of a polarization on a larger
scale. Therefore, for our model system flexoelectric
effects are expected to be quite small. The preference
of antiparallel alignment can be partly observed even
from a snapshot of the molecular configuration
Ž .Fig. 2 .

Fig. 2. Molecular configuration corresponding to temperature T ) s3.00 and steric dipole p) s0.524. The gray level indicates the angle
Ž .between the individual molecule and the director light parallel ... dark perpendicular .
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Table 2
Order parameter dependence of elastic constants K ) and flexoelectric coefficients e) for the model system with molecular steric dipolei i i i

p) s0.524
) ) ) ) )² :P K K K e e2 11 22 33 11 33

0.788"0.013 18.30"0.04 18.58"0.04 17.11"0.04 0.13"0.01 0.001"0.01
0.768"0.015 15.75"0.04 16.07"0.04 14.69"0.04 0.12"0.02 0.001"0.02
0.733"0.019 14.31"0.06 14.64"0.06 13.34"0.06 0.11"0.03 0.001"0.03
0.712"0.017 11.46"0.05 11.83"0.05 10.67"0.05 0.09"0.02 0.001"0.02
0.682"0.023 10.51"0.06 10.86"0.06 9.77"0.06 0.08"0.03 0.001"0.03
0.670"0.023 9.29"0.04 9.65"0.04 8.64"0.04 0.07"0.03 0.001"0.03
0.543"0.047 4.42"0.05 4.70"0.05 4.12"0.05 0.04"0.03 0.001"0.03
0.058"0.040 0.03"0.06 0.03"0.06 0.03"0.06 0.001"0.03 0.001"0.03

We now turn to the dependence of the elastic and
flexoelectric coefficients on the order parameter
² 2:P . The tables contain the Frank elastic constants
K ) sK s re and the flexoelectric coefficientsi i i i 0 0

e) se s 2re for the two model systems withi i i i 0 0
) Ž . )steric dipole p s0.524 Table 2 and p s0.662

Ž .Table 3 .
The slightly different degree of order discussed

above does not have a large influence on the abso-
lute values of the elastic constants. Significantly, the
pear-shaped molecules reveal an unusual elastic ani-
sotropy. Whereas for the elastic constants of rod-like
molecules we commonly find K ) )K ) )K ) )033 11 22
w x13,24 , the additional LJ center has considerable
influence on the relatiÕe importance of elastic distor-
tions. Unlike the case of symmetric molecules, we
find that the shape polarity favours bend deforma-
tions: the tables reveal K ) to be the smallest of the33

elastic constants. For both model systems we find an
anisotropy as K ) )K ) )K ) )0, which is oppo-22 11 33

site to what is known for rod-like molecules and
w xrather close to discotic systems 14 . A possible

explanation could be again the locally preferred anti-

parallel alignment of the molecules. Splay and twist
distortions force two neighbouring molecules to dis-
rupt this arrangement, whereas bend deformations
act along the direction of the molecular axes and
thus are more favorable.

Next we discuss the flexoelectric coefficients for
the two model systems. As already stated above,
flexoelectric effects are supposed to be rather small,
which is reflected by the numerical values of the
corresponding coefficients. In particular, e) is even33

one order of magnitude smaller than e) . The small-11

ness of e) , which falls within the error bar of our33

calculations, nevertheless suggests that there is hardly
any bend flexoelectric effect. Indeed, Meyer had
pointed out already that for pear-shaped molecules
the polarization couples to a splay distortion, whereas
a banana shape of the molecules should be necessary

w xin order to produce a bend flexoelectric effect 1 .
Our calculations are in qualitative agreement with
these arguments and, in addition, we can provide a
quantitative estimate on the relative importance of
flexoelectric deformations. Experimental data for e)

11

and e) are scarce and they are spread over a wide33

Table 3
Order parameter dependence of elastic constants K ) and flexoelectric coefficients e) for the model system with molecular steric dipolei i i i

p) s0.662
) ) ) ) )² :P K K K e e2 11 22 33 11 33

0.691"0.018 11.09"0.02 11.98"0.02 10.01"0.02 0.14"0.02 y0.001"0.02
0.663"0.020 7.64"0.02 8.38"0.02 6.90"0.02 0.11"0.02 y0.001"0.02
0.523"0.067 5.35"0.04 5.93"0.04 4.84"0.04 0.08"0.03 y0.001"0.03
0.186"0.028 0.38"0.02 0.45"0.02 0.35"0.02 0.01"0.02 y0.001"0.02
0.074"0.043 0.01"0.01 0.02"0.01 0.01"0.01 0.001"0.01 y0.001"0.01
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range, depending on the method used to detect flexo-
electric effects. Considering the fact that most data

w xare available for MBBA 25–34 which is far from
being a pear-shaped molecule it is very difficult to
relate the calculations for our idealized model sys-
tems to real experiments in a quantitative way. How-
ever, concerning the role of shape asymmetry, aˆ
general trend can be extracted from our investiga-
tions. When we compare the two systems it is appar-
ent that an increase of the steric dipole leads to a
considerable increase of the splay flexoelectric coef-
ficient, whereas the average elastic constant is barely
affected by this change in molecular shape. Most
experiments yield the ratio between combinations of
the flexoelectric coefficients and an elastic constant
Ž .e "e rK. By performing experiments for a se-11 33

ries of molecules that are only slightly different in
their asymmetry the interplay between shape polarity
and the magnitude of flexoelectric effects should be
directly accessible.

In summary we have shown that flexoelectric
coefficients can be obtained by computer simula-
tions, starting from a simple molecular model which
allows controlled asymmetric deformations.

Acknowledgements

We wish to acknowledge support from CNR,
ŽMURST, University of Bologna and the EU TMR-

.FMRX CT970121 and, in particular, a M. Curie
TMR grant to J. Stelzer.

References

w x Ž .1 R.B. Meyer, Phys. Rev. Lett. 22 1969 918.
w x Ž .2 J. Prost, J.P. Marcerou, J. de Physique 38 1977 315.
w x Ž .3 J.P. Marcerou, J. Prost, Mol. Cryst. Liq. Cryst. 58 1980

259.
w x Ž .4 M.A. Osipov, Sov. Phys. JETP 56 1983 1167.
w x Ž .5 M.A. Osipov, J. de Physique Lett. 45 1984 823.
w x Ž .6 J.P. Straley, Phys. Rev. A 14 1976 1835.

w x7 V.B. Nemtsov, M.A. Osipov, Sov. Phys. Crystallogr. 31
Ž .1986 125.

w x8 M.D. Lipkin, S.A. Rice, U. Mohanty, J. Chem. Phys. 82
Ž .1985 472.

w x Ž .9 A. Poniewierski, J. Stecki, Mol. Phys. 38 1979 1931.
w x10 B. Tjipto-Margo, G.T. Evans, M.P. Allen, D. Frenkel, J.

Ž .Phys. Chem. 96 1992 3942.
w x Ž .11 F.C. Frank, Disc. Faraday Soc. 25 1958 19.
w x12 C.G. Gray, K.E. Gubbins, Theory of Molecular Fluids, vol.

1, Oxford University Press, Oxford, 1984.
w x13 J. Stelzer, L. Longa, H.-R. Trebin, J. Chem. Phys. 103

Ž . Ž .1995 3098; 107 1997 1295E.
w x14 J. Stelzer, M.A. Bates, L. Longa, G.R. Luckhurst, J. Chem.

Ž .Phys. 107 1997 7483.
w x Ž .15 L. Blum, J. Chem. Phys. 58 1973 3295.
w x16 M.P. Allen, C. Mason, E. de Miguel, J. Stelzer, Phys. Rev. E

Ž .52 1995 R25.
w x Ž .17 J.G. Gay, B.J. Berne, J. Chem. Phys. 74 1981 3316.
w x18 R. Berardi, A.P.J. Emerson, C. Zannoni, J. Chem. Soc.,

Ž .Faraday Trans. 89 1993 4069.
w x19 R. Berardi, C. Fava, C. Zannoni, Chem. Phys. Lett. 297

Ž .1998 8.
w x20 R. Berardi, C. Fava, C. Zannoni, Chem. Phys. Lett. 236

Ž .1995 462.
w x21 F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, C. Zannoni,

Ž .Phys. Rev. Lett. 75 1995 1803.
w x Ž .22 A.J. Stone, Mol. Phys. 36 1978 241.
w x Ž .23 M.P. Allen, M.A. Warren, Phys. Rev. Lett. 78 1997 1291.
w x24 M.P. Allen, M.A. Warren, M.R. Wilson, A. Sauron, W.

Ž .Smith, J. Chem. Phys. 105 1996 2850.
w x25 D. Schmidt, M. Schadt, W. Helfrich, Z. Naturforsch. A 27

Ž .1972 277.
w x Ž .26 J. Prost, P.S. Pershan, J. Appl. Phys. 47 1976 2298.
w x27 A.S. Vasilevskaya, A.V. Kaznachev, A.S. Sonin, Sov. Phys.

Ž .Solid State 24 1982 2118.
w x28 I. Dozov, P. Martinot-Lagarde, G. Durand, J. de Physique

Ž .Lett. 43 1982 365.
w x29 I. Dozov, I. Penchev, P. Martinot-Lagarde, G. Durand, Ferro-

Ž .electrics Lett. 2 1984 135.
w x30 N.V. Madhusudhana, G. Durand, J. de Physique Lett. 46

Ž .1985 195.
w x31 G. Barbero, P. Taverna-Valabrega, R. Bartolino, B. Valenti,

Ž .Liq. Cryst. 1 1986 483.
w x32 B. Valenti, C. Bertoni, G. Barbero, P. Taverna-Valabrega, R.

Ž .Bartolino, Mol. Cryst. Liq. Cryst. 146 1987 307.
w x33 L.M. Blinov, L.A. Beresnev, S.A. Davidyan, S.G. Kononov,

Ž .S.V. Yablonsky, Ferroelectrics 84 1988 365.
w x34 G. Barbero, A.N. Chuvyrov, A.P. Krekhov, O.A. Scaldin, J.

Ž .Appl. Phys. 69 1991 6343.


