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Abstract. We present a lattice model for biaxial liquid crystal elastomers and perform large-scale Monte

Carlo simulations in this model system. Uniaxial and biaxial orientational ordering clearly reflects in

macroscopic spontaneous sample deformations. The simulation output is used to predict calorimetry data

and deuterium magnetic resonance spectra.

PACS. 61.30.Vx Polymer liquid crystals – 61.30.Cz Molecular and microscopic models and theories of

liquid crystal structure – 61.41.+e Polymers, elastomers, and plastics

1 Introduction

Crosslinked polymeric chains with embedded mesogenic

units — liquid crystal elastomers — are functional rubber-

like materials characterized by a pronounced coupling of

mesogenic ordering and macroscopic elastic deformations.

External stimuli such as temperature variation, ultra-violet

irradiation, or an external electric field can induce changes

in orientational mesogenic ordering and, consequently, in

macroscopic sample shape [1]. In nematic elastomers, meso-

genic units typically exhibit uniaxial ordering, while in

the past a possibility of biaxial ordering in ordinary ther-

motropic nematics has been predicted theoretically [2],

as well as from lattice [3] and off-lattice Monte Carlo

(MC) simulations [4]. Recently, there have been a num-

ber of experimental observations of biaxial orientational

order in thermotropic nematics, coming from x-ray [5],

dynamic light scattering [6], and deuterium magnetic reso-

nance (2H NMR) studies [7,8]. Moreover, biaxial order has

already been observed in nematic liquid-crystalline side-

chain polymers [9,10].

These developments indicate that one can reasonably

expect the synthesis of biaxial nematic elastomers capa-

ble of showing biaxial orientational order and, as a result,

biaxial spontaneous deformations. Therefore, we believe
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the time is appropriate to start analyzing theoretically

some of properties expected from these novel materials

and discussing the difference from uniaxial liquid crystals

elastomers. In the present paper we thus propose a sim-

ple lattice model for biaxial liquid crystal elastomers, and

perform large-scale MC simulations to predict the corre-

sponding spontaneous deformations, as well as calorime-

try data and 2H NMR spectra. The proposed model is an

evolution of our uniaxial lattice model for liquid crystal

elastomers presented in Ref. [11].

2 Model

Following the lines of our earlier uniaxial study [11], the

main elements of the model are i) rubber elasticity of the

polymer network, ii) anisotropic interactions between bi-

axial mesogenic units, and iii) the strain-orientational cou-

pling of the polymeric chains and mesogenic units. First,

the sample is divided into N unit cells. The lattice points

are taken to approximately correspond to crosslinks in

the polymeric network, while the deformable lattice bonds

substitute the connecting polymeric chains. In absence of

elastic deformation and orientational order the unit cells

are assumed to be simple cubic with side a.

Describing rubber elasticity we assume that the poly-

mer chains are ideally flexible, and that they do not inter-

act with each other and with the mesogenic units. Then,

considering an affine elastic deformation λ that changes

the unit cell sides from {a, a, a} into {λxa, λya, λza}, we

can write the rubber-elastic part of the pseudo-Hamiltonian

as [11]

He = NkBTα
(
λ2

x + λ2
y + λ2

z

)
. (1)

Here α = 3a2/2Mb2; M stands for the number of mono-

mers between two crosslinks and b for the length of a sin-

gle monomer. As elastomers are essentially incompressible,

λxλyλz = 1.

The mesogenic material inside each unit cell is assumed

to be close-packed and represented by a biaxial molecular

cluster — “particle”. For the ith unit cell its orientation

is given by the orthonormal triad {si, ti,ui}. Then, let ti

and ui correspond to the short and long axis of the cluster,

respectively. Assuming that the interaction between the

molecular clusters is predominantly of dispersive origin

(for a more general case see, e.g., [12]), the corresponding

Hamiltonian reads [3]

Hn = −ε
∑
〈ij〉

{
R2

00(ωij) + 2ν
[
R2

02(ωij) + R2
20(ωij)

]
+4ν2R2

22(ωij)
}

(2)

where the sum runs over nearest neighbor cells i and j (as-

suming periodic boundary conditions), ε > 0 is a constant,

and ν is the molecular biaxiality parameter. ωij stands for

the relative orientation of the neighboring particles i and

j, defined by the three Euler angles, αij , βij , and γij . R2
mn

are combinations of Wigner functions and are given by [13]

R2
00(ωij) =

3
2

cos2 βij −
1
2
, (3)

R2
02(ωij) =

√
3
8

sin2 βij cos 2γij , (4)

R2
20(ωij) =

√
3
8

sin2 βij cos 2αij , (5)

R2
22(ωij) =

1
4
(cos2 βij + 1) cos 2αij cos 2γij −

1
2

cos βij sin 2αij sin 2γij . (6)
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Alternatively, in terms of orthonormal triads the R2
mns

become

R2
00(ωij) =

3
2
(ui · uj)2 −

1
2
, (7)

R2
02(ωij) + R2

20(ωij) =

√
3
2

[
(ti · tj)2 − (si · sj)2

]
, (8)

R2
22(ωij) =

1
4

[
(ti · tj)2 + (si · sj)2

−(ti · sj)2 − (si · tj)2
]
.(9)

For ν = 0 Hn reduces to the Lebwohl-Lasher Hamilto-

nian for uniaxial particles [14], while 0 < ν < 1/
√

6 and

ν > 1/
√

6 simulate prolate and oblate biaxial particles,

respectively. Depending on temperature and ν, an ensem-

ble of biaxial particles can be found in the isotropic (I),

nematic (N), or biaxial (B) phase. In the isotropic phase,

no orientational order is present. In the nematic phase,

for prolate particles their long axes ui align, which is

referred to as the “positive” nematic phase (N+); anal-

ogously, oblate particles align along their short axes ti,

forming the “negative” nematic phase (N−). In the biax-

ial phase, all three particle axes (si, ti, ui) are aligned [3].

Finally, orientational ordering couples to strain. In the

uniaxial version of the model [11] this coupling is imple-

mented via a Maier-Saupe-like mean field: mesogenic par-

ticles experience an aligning mechanical field along the

fixed stretch direction, with a strain-dependent field strength.

In the original Maier-Saupe theory for uniaxial ordinary

nematics [15,16], the local aligning field strength is pro-

portional to the degree of order of the surrounding nematic

material. Analogously, here we adapt the mean-field treat-

ment of orientational ordering in liquid crystals proposed

by Straley for the biaxial case [2]. Then, denoting with ωi

the Euler angles for a relative orientation of ith particle

and {x,y,z} — an orthonormal triad defining the prin-

cipal axes of the biaxial sample deformation — one can

write a coupling pseudo-Hamiltonian

Hc = − kBTχ
N∑

i=1

[
r2
00(λ)R2

00(ωi) + 2r2
20(λ)R2

20(ωi)
]
,

(10)

where χ is a coupling constant and r2
mn(λ) are the de-

formation-dependent quantities measuring the anisotropy

of the polymer chain end-to-end tensor distribution (and,

consequently, the strength of the mechanical field com-

ponents). This distribution is represented by a biaxial el-

lipsoid E obtained by deforming a unit sphere at constant

volume by the factors λx, λy, and λz along x, y, and z, re-

spectively. Denoting with θ and φ the polar and azimuthal

biaxial uniaxial isotropic

(a)

(c)

(b)

(d)

(e)

Fig. 1. Schematic depiction of sample shape (reflecting the

symmetry of the polymer chain end-to-end tensor distribution)

for different types of orientational ordering. In all cases the ne-

matic director is vertical. (a-b) Positive materials with prolate

mesogens, as well as negative materials with oblate mesogens.

(c-d) Positive materials with oblate mesogens, or negative ma-

terials with prolate mesogenic units. (e) Undeformed sample,

no orientational order.



4 G. Skačej, C. Zannoni: Biaxial liquid crystal elastomers: a lattice model

angles measured with respect to z and x, respectively, and

with Ω the corresponding solid angle, the r2
mns are defined

as

r2
00(λ) = (4π)−1

∫
E(λ)

(
3
2

cos2 θ − 1
2

)
dΩ, (11)

r2
20(λ) = (4π)−1

∫
E(λ)

√
3
8

sin2 θ cos 2φ dΩ (12)

and are calculated numerically using the Simpson quadra-

ture formula upon every deformation λ. In Hc, R2
mn(ωi)

can also be written as

R2
00(ωi) =

3
2
(ui · z)2 − 1

2
, (13)

R2
20(ωi) =

√
3
8

[
(ui · x)2 − (ui · y)2

]
. (14)

Hence, having avoided terms depending on γi [i.e., R2
02(ωi)

and R2
22(ωi)] in Hc we actually assume that only the ori-

entation of the particle long axis, ui, is actually coupled

to the polymer network, while the other two axes, si and

ti, are not.

The sign and the magnitude of the coupling parame-

ter χ depend on the specific architecture of the elastomeric

material [11]. Here, χ > 0 describes “positive” materials

in which mesogenic units align along the stretching direc-

tion, as in main-chain elastomers. Similarly, χ < 0 can be

attributed to “negative” materials where mesogens align

perpendicular to the axis of stretching, like in some types

of side-chain materials.

3 Monte Carlo simulations and observables

We have performed a large set of constant-force MC sim-

ulations to study the behavior of our model system. The

MC evolution followed the standard Metropolis algorithm [17],

with the total Hamiltonian given by H = He +Hn +Hc.

Two types of MC trial moves were attempted: i) single

particle reorientation and ii) sample resize moves. i) In

generating single particle reorientations, both the rota-

tion axis (x, y, or z) and the rotation angle were chosen

at random [18]. In every MC cycle each of the N particles

was chosen once for a reorientation attempt, following a

random sequence [19]. In case of acceptance, the corre-

sponding triad {si, ti,ui} was updated. The acceptance

of reorientation moves is driven by Hn, Hc, and tempera-

ture. ii) Every sample resize move consisted of generating

a random variation of two simulation box sides, while the

third box side was determined from the incompressibility

constraint. The resize move affectsHe andHc. — The trial

move amplitude for each move type was adjusted on the

fly to maintain the corresponding acceptance ratio close

to 50%, checking that evolution proceeds. Our system size

was set to N = 503 unit cells. We have performed several

heating and cooling MC run cascades. Every run was ini-

tialized with the equilibrated configuration obtained from

the previous run at the nearest lower/higher temperature.

Then, at least 70 MC kcycles were performed for equili-

bration and 66 kcycles for production.

In a heating/cooling temperature scan, structural tran-

sitions between the I, N+, N−, and B phases can be de-

tected by calorimetry via anomalies in the heat capacity

of the system, CV . According to the fluctuation-response

theorem, CV can be related to fluctuations of internal en-

ergy U (calculated from Hn) during the MC run. Then,
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the corresponding dimensionless specific heat per particle

is given by

c∗V =
CV

NkB
=
〈U2〉 − 〈U〉2

N(kBT )2
. (15)

More direct information on biaxial orientational ordering

can be extracted from thermodynamic averages 〈R2
mn〉 [3].

Moreover, as orientational order couples to elastic defor-

mation, the average simulation box sides, λx, λy, and λz,

are also relevant observables.

Experimentally, biaxial orientational order in nematic

polymers has been detected by 2H NMR [9,10]. For this

c
∗

V

8.0

6.0

4.0

2.0

0.0

T
∗

λx,y,z

2.01.51.00.50.0

1.1

1.0

0.9

Fig. 2. Temperature dependence of specific heat (top) and

average sample dimensions (bottom) for different values of the

biaxiality parameter: ν = 0 (×), ν = 0.2 (2), ν = 1/
√

6 ≈

0.4082 (◦), and ν = 0.6 (4). Positive material, χ = 0.5.

reason, we have used our simulation output to predict

2H NMR spectra of biaxial elastomers. Deuterating meso-

genic material yields an orientation-dependent quadru-

polar frequency splitting ωQ that, for the jth biaxial par-

ticle, is given by

ωj
Q = ±δωQP2(uj · b). (16)

Here we have assumed that the electric field gradient (EFG)

tensor of the carbon-deuteron bond is effectively uniax-

ial, with the symmetry axis of the tensor parallel to the

long particle axis, ui. Further, b represents a unit vector

parallel to the NMR spectrometer magnetic field and δωQ

denotes a coupling constant [20]. Then, the spectra can be

calculated by generating the free induction decay signal

G(t) =
〈

exp
(

i

∫ t

0

ωj
Q(t′) dt′

)〉
j

, (17)

where 〈· · ·〉j stands for ensemble averaging over particles,

and Fourier-transforming it [21]. We believe that the MC

reorientation moves reproduce the real mesogenic dynam-

ics sufficiently well to produce reliable NMR spectra. — In

each run, we have simultaneously calculated three spectra,

with the spectrometer magnetic field directed along x, y,

and z, to easily detect any biaxiality in ordering. Transla-

tional diffusion was neglected. The duration of one NMR

cycle, 2π/δωQ, was fixed to 1024 MC cycles. Finally, for

smoothening, a convolution with a Lorentzian kernel of

appropriate width was applied.

4 Results

Heating/cooling runs have been performed for positive

and negative materials, as well as for different values of
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ν = 0

ωQ/δωQ

1.00.0-1.0

ν = 0.2

ωQ/δωQ

1.00.0-1.0

ν = 1/
√

6

ωQ/δωQ

1.00.0-1.0

T ∗
= 2.00

T ∗
= 1.50

T ∗
= 1.00

T ∗
= 0.50

T ∗
= 0.05

ν = 0.6

ωQ/δωQ

1.00.0-1.0

Fig. 3. Temperature dependence of 2H NMR spectra for different values of ν. The spectrometer magnetic field was directed

along x, y, and z; the resulting spectral sets are superimposed. Positive material, χ = 0.5. Note the absence of histeresis (at

present resolution).

the biaxiality parameter ν. The parameter α [see Eq. (1)]

that is related to the elastic modulus of the material was

set to 0.3 as in Ref. [11]. Spontaneous deformation types,

as observed during the runs, are shown schematically in

Fig. 1.

Consider positive materials with χ = 0.5 first. Set-

ting ν = 0, the pair potential for the interaction between

mesogenic units, Eq. (2), becomes uniaxial as in Ref. [11].

On cooling from the isotropic phase the specific heat c∗V

(Fig. 2, top) peaks at T ∗ = kBT/ε ≈ 1.141 ± 0.003 [11],

which is a signature of the weakly first-order isotropic-

nematic (IN+) phase transition. (A more detailed anal-

ysis [11] shows that the transition temperature is shifted

to a slightly higher value in comparison with the ordinary

liquid crystal, which is attributed to the order-stabilizing

effect of the mechanical field.) The particle alignment is

accompanied by a spontaneous deformation of about 8%

along the director (Fig. 2, bottom) and a lateral contrac-

tion of about 4% to maintain volume constant. Cooling

to even lower T ∗, the spontaneous deformation increases

together with the degree of nematic order. Fig. 3 shows

the corresponding 2H NMR spectra, with superimposed
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curves for different spectrometer field orientations: b||x, y,

or z, i.e., parallel or perpendicular to the nematic director

n. In the isotropic phase a single line at zero quadrupo-

lar splitting is observed. In the nematic phase, however, a

doublet appears at ±∆ω and ±∆ω/2 for b||n and b ⊥ n,

respectively, where ∆ω denotes the maximum frequency

splitting observed for a given degree of order. The spectra

for b ⊥ n overlap as long as ordering is uniaxial. De-

creasing T ∗, ∆ω — proportional to the degree of nematic

ordering — increases.

Weakly biaxial prolate particles with ν = 0.2 exhibit

biaxial order, however only for T ∗ < 0.2. This can be de-

duced from a second peak in the temperature dependence

of c∗V reflecting the nematic-biaxial (N+B) transition. The

N+B transition is of the second-order: the c∗V peak is not

as sharp as the one at T ∗ ≈ 1.15 attributed to the IN+

transition. For ν = 0.2 the biaxiality is too weak to be de-

tectable from asymmetries in lateral sample contraction

or in 2H NMR spectra for b ⊥ n.

In the ordinary liquid crystal, the stability temper-

ature range of the biaxial phase is widest at the limit

between prolate and oblate particles (for ν = 1/
√

6 ≈

0.4082) where there is a direct second-order isotropic-biaxial

(IB) transition [3] at the Landau point. Performing a cool-

ing run with our model elastomer for ν = 1/
√

6 ≈ 0.4082

this direct IB transition splits into a pair of near tran-

sitions: IN+ at T ∗ ≈ 1.17 ± 0.01 and N+B at T ∗ ≈

0.96± 0.01. The latter transition can be reliably detected

only from the asymmetry in lateral sample dimensions as

the corresponding c∗V peak is extremely broad. The biax-

ial asymmetry is now clearly visible also from 2H NMR

spectra: the two b ⊥ n spectral sets do not overlap any

longer, except in the narrow temperature window where

ordering is uniaxial.

Results from more detailed temperature scans are sum-

marized in the phase diagram shown in Fig. 4. From the

diagram one can deduce that the Landau point has actu-

ally moved to ν ≈ 0.414 ± 0.001, i.e., that the stability

range of the N+ phase formed by prolate (rod-like) meso-

genic particles has slightly increased at the expense of the

N− phase formed by oblate (plate-like) particles. This is

another consequence of the mechanical field presence: as

in our model the particle alignment couples to strain ex-

clusively via the orientation of the particle long axis ui —

see the expression for Hc — the mechanical field stabilizes

the alignment of ui, rather than that of the short axes ti.

Hence, the N+ phase becomes favored over N−.

B

I

N−N+

ν

T
∗

0.450.440.430.420.410.40

1.3

1.2

1.1

1.0

0.9

0.8

Fig. 4. Orientational phase diagram of a biaxial elastomer

(positive material, χ = 0.5). Note the shift of the Landau point

from ν = 1/
√

6 ≈ 0.4082 (dashed line) to a slightly higher

value.
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c
∗

V

8.0

6.0

4.0

2.0

0.0

T
∗

λx,y,z

2.01.51.00.50.0

1.1

1.0

0.9

Fig. 5. Same as Fig. 2 (including key), yet for a negative ma-

terial with χ = −0.5. While the c∗V temperature dependences

(top) are almost identical to those calculated for the positive

material, the sample deformations λx, λy, and λz (bottom) are

quite different.

For oblate particles the isotropic phase on cooling trans-

forms into the negative nematic phase, where the short

particle axes are aligned. While for prolate particles the

IN+ transition temperature was essentially ν-independent,

this is no longer the case for oblate particles. For ν = 0.6

the IN− transition takes place at T ∗ ≈ 1.75, while the

N−B transition can be observed at T ∗ ≈ 0.50; see Fig. 2.

In the N− phase the sample contracts along the director

and expands laterally. The degeneracy of the lateral sam-

ple sides is lifted once in the biaxial phase. The 2H NMR

spectra show two pairs of peaks: one at ±∆ω/2 and one

at ±∆ω/4, corresponding to b||n and b ⊥ n, respectively.

(Recall that n here is assigned to the average orientation

of the short molecular axes ti and that the EFG tensor

principal axis is directed along the long axes ui that are

moving fast on the 2H NMR time scale.) Again, the peaks

at ±∆ω/4 split once biaxial order is obtained.

We have also performed a sequence of heating runs

that are also shown in all plots. Note that the curves es-

sentially overlap and hysteresis in all cases (at current

precision) is negligible.

Let us also comment on negative (e.g., end-on side

chain) materials, taking χ = −0.5. The orientational or-

dering behavior (and, consequently, the resulting 2H NMR

spectra) is essentially the same as for positive materi-

als. The main difference appears in average sample di-

mensions: for example, in the N+ phase a positive mate-

rial expands along n, while a negative material contracts

(Fig. 5). In the N− phase a positive material contracts

along n, and vice versa for a negative material. Again, in

the B phase, the symmetry of the two lateral components

(perpendicular to n) is broken. See also Fig. 1.

5 Conclusions

We have developed a coarse-grained lattice model for bi-

axial liquid crystal elastomers, treating elastomers with

both prolate and oblate mesogenic units, as well as pos-

itive and negative materials in terms of strain-alignment

coupling. Our model elastomer can be found in the bi-

axial, uniaxial nematic (either positive or negative), and
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isotropic phase, which clearly reflects in predicted average

sample shape, as well as in simulated 2H NMR spectra.

The stability range of rod-like (prolate) nematic ordering

is sligthly increased at the expense of plate-like (oblate)

ordering, which implies a shift of the Landau point to a

somewhat higher molecular biaxiality value in comparison

with an ordinary biaxial nematic.
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uid Crystalline Elastomers) Research Training Network funded
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