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ABSTRACT. We introduce the description of translational, oricntational and internal order parametess in
liquid crystals. We give a systematic approach 1o the identification of the relevant parameters as expansion
coefficients of the singlel distribution function in a suitable basis set. The construction of approximalc
distributions from a limiled set of order paramelers using Lhe maximum entropy principle is discussed. We
treat in detail order parameters and distnibution functiors for three cases: rigld molecules with cylinddicat
or biaxial symmetry and poo-rigid molecules with one intemal rotor dissolved in vanous mesophases.

1. Introduction

The description of order in liquid crystals (1-3] started many years ago with a reasonably easy and
well-defined question. How do we define the orientational order in a system of cylindrically
symmetric, clongated objects ¢that form a mesopbase with overall cylindrical symmetry? An answer
was provided half a century ago by Tsvetkov [4), iLe.,

S=<(cost p - 1)/2>, m
where g is the angle between the molecular and the mesophase symmetry axes and the angular
brackets indicale a statistical average. This order parameter has the mice feature of being zero
when the molecular axes are randomly distributed with respect to the laboratory axcs, i.c., when
the mesophase is isotropic. [t also becomes one when the molecular axes arc completely aligned
with respect to a laboratory direction (the director). It is rather curious that fifty years later the
situation looks much more complicated and the task of describing ordering in liquid crystals is
much more difficult. On the onc hand the number and importance of different liquid crystal types
has increased enormously. There arc many important smectic phases [3), discotic [S5,6] and
pyramidic [7,8] phases let alone lyotropics [9] and polymer liquid crystals [10]. Morcover Lhe
same liquid crystals, ie, nematics can be produced in many more different ways, with
nematogenic molecules that are not simple rods or discs [11). Thus on the one hand it would be
tempting to consider a description of ordering in terms of the arrangement of very simple building
blocks (sec the schemes in [11] as an example) with ellipsoids, discs, wiggly lincs and (o treat
many sysiems ai this scmi~qualitative level.

On the other hand there is an increasing number of detailed studies on solute molecules
dissolved in simple liquid crystals, nemalics, say and on simple mesogeme molecules themsclves
where a detailed knowiedge of molecular order, including biaxiality, flexibility eic. is required
{12,13]. The other extreme would be that of having a complete, systematic classification and using
it consistently. However, this description would be very complicated and cumbersome and
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basically useless, except for a very few systems. Indeed that kind of detail is not accessible to
most experimental techniques.

To reconcile the two needs, we shall try to give a systematic, albeit rather formal procedure for
introducing order parameters [14-16]. However, in the next sections we shall also try to give very
detailed examples for simple bt important cases, like that of purely orientational order. These
sections will be kept reasonably self-contained, so the next formal section can be skipped by the
reader interested only in those aspects.

2. General Approach

As a starting point we consider a system of N molecules in a certain state of aggregation. For a
real system the microscopic description we are looking for is a statistical one and the state of the
system is represented by the information nccessary o calculate all of the average propertics of
interest. We assume the molecules to be classical particles with position specified by a vector r
locating a molecule fixed point with respect to the chosen laboratory frame. If the molecule is
rigild we can also specify its orientation (). In this case the orientation of the molecule is given
in terms of up to three Euler angles afy [17] or four quaternions linked by a normalisation
relation [18,19]. This set of quantities defines the origin and the orientation of a coordinate (rame
fixed on the molecule (the molecular frame). In the special case of cylindrical symmetry only two
angles are necessary to specify the molecular orientation. Notice, however, that real molecules are
often ncither cylindrically symmetric nor rigid, for they can have for example, flexible chains or
rings that can rotate with respect (o each other. We shall have, therefore, to expect that, beyond
a centain level of sophistication, features such as deviation from cylindrical symmetry and
flexibility will have to be taken imto account [20]. If we assume that a molecule is formed of a
collection of connected rigid rotors, we can specify its state by giving the position, r, and
orientation, €2, of cne rigid fragment and another set of variables, @ specifying the orentation of
the other fragments with respect fo the first [16]. We shall discuss in some detail the case of
molecules with one internal rotor where @ = ¢ specifies the conformational state [16,21]. For our
purposes, however, the complete static information about the system is represented by its
configuration ie., by the set of positions r, orientations €2, and conformational variables @ of all
the particles.

The enormous number of positional and orientational coordinates specifying the various
configurations is fortunately unnecessary if we are only interested in calculating average
properties. Suppose, for example, that the probability for a molecule to have a certain position (r
+ dr), orientation (Q + dQ), and intemal state (® + 4®) i.e., P(r,Q,®) is known. In this case the
average of any property A(r,Q,®) relating 10 a single molecule can be calculated as

< 4> =< ANQD) >, )

= Jd.- & d® A{r, QL) Pr,L0),

where we use the angular brackets to indicate the statistical average. Here the volume elements
dr, & are respectively dxdydz and dusin fdfdy. The conformational variables will, of course,
have to be detailed explicitly, for the one rotor case 0 = dg. The integrals are extended to the
sample volume and to the appropriate angular volumes, The normalisation of the distribution
P(rQo), is
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j dr dQ d® P(r, Q) = 1. )

The singlet distribution P contains therefore all of the microscopic information necessary to
calculate one particle properties. In tum the structure and ordering of the system will be reflected
by P

PrO®) = < &r - r)5(Q - )30 - ) >, )
where 8(a - b) is a Dirac delta function and the integration implied in the ensemble average <.>
is over the primed variables. The Dirac function acts as a counting device, since it is different
from zero only when the primed variable equals the desired value. We could visualise a realisation
of this in terms of an idealised experiment or a computer simulation where we have all the
positions, orientations, etc. for every panticle. The distribution function is obtained by counting
all of the particles that have the position-orientation-internal variable equal to the desired value
in the given configuration and then averaging over the equilibrium configurations. Generalisation
1o distributions for n variables can be similarly given, yielding pair and in general multiplet
distributions [14]. The singlet distribution can be rewritten in a convenient way using the Fourer
integral representation of the positional delta function (22)

§r - r') = (2r)” [ dk explik.(r - 1)), (5

and the expansion of the angular delta function in generalised spherical harmonics or Wigner
rotation matrices D2 (€) [17,14]

82 - ) = Z f: )i‘{(zL + 1)/8=*} DL(Q) D2IQ"). (6)

L=t mel aei
The functions D2 (€), with Lmn integers and L 2 0, -L. S m S L, -L € n $ L, are of particular
importance in the description of ordering, Their properties are briefly summarised in [14]. We also
assume that there exists a suitable orthogonal basis set W, (®) for the internal variables as well,
0 that we can write ong more representation of the della function [22]

j & 4, (O) ¥1{D) = £ B(A - 1Y, O

where &, is a normalisaticn constant. Thus

(@ - D) =Y & ¢, (@) ¢i(@). ®)
1

For example, for a molecule with A independent interoal rotational degrees of freedom, each
described by an angle of rotation ¢, about a ceriain bond

5o - ) = fIB(;ﬂ‘ -4, 9)

so that for each degree of freedom an expression like



3¢ - 4) =} k(@) (10a)

= (20" Y. exp{-in(¢ - 4} (10b)

with integer n holds, since for the one rotor case the basis set is just the one dimensional Fourier
sel {exp(-ing)} and &k, = 2. Before becoming involved in details of the distnbution functions it
is worth seeing if we can make some general statements about them. Let us consider as a first
example a uniform system i.e., a system that does not change under translation. For a uniform
fluid the singlet probability will be independent of the position of the molecutes with respect to
the laboratory frame

P(r.@) = (p/N)PED), (1)

where o = N/V is the mmnber density and P(£2,®) is an orientational-conformational distribution
pnomalised to uaity ie.,

[ &0 d0 PQD) = 1. (12)

For an ordinary fluid P(£2,¢P) cannot depend on £ and for rigid molecules it must be a constant.
For a system like this i.e., a rare gas, if we limit curselves to one particle properties, all that can
change at the liquid-gas transition is just the demsity. We can take as the order parameter the
difference between the density of the gas and that of the liquid This could be the case of an
ordinary isotropic liquid or of a nematic, but not of a smectic or a crystal, where molecular
positions are regularly arranged. The situation is, however, quite different in an anisotropic system,
as we shall see in detail in the next section. Substitution of the various delta function
representations gives

PrOO) - Jdk ¥

Lmad

(62: :D}(ﬂm(-fk-r')DiZ(Q')q:;(m')) exp(ik.1) D2 (Q) ¢, (@), (133)

n’k,

= ]dk Y P, (k) explik.r) DL(Q) (D). (13b)
Lma, )

Another equivalent way of seeing this is to say that the distribution P(r,£,®) is a function of the
positional, orieniational and internal variables. As any other well-behaved function we should be
able to expand it in a basis set over these variables. Now the plane waves exp(fk'.r), the Wigner
rotation matrices D2 () and the functions y,(®) constitute suitable orthogonal basis sets for
positions, orientations and for the internal variables. The distnbution can be written in general as
the expansion equation (13) and the coefficients obtained using the onthogonality of the basis set.
Thus

Jdr dQdD P(r,0,®) exp(-ik.r) DL (D)

[drdetD P(r,Q.®)

We shall call the positional-orientationalconformational order parameters the infinite set of
averages of the basis functions

(2L +1)
64:t’k,t

P (K= (14
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(exp(-ik.r") D) ¥3(@). (15)

Clearly a complete set of order parameters has an information content equivalent to that of the
distribution function. A subset of these coefficients will contain some necessarily partial, but as
we shall see possibly very significant information on the same distribution. When the positions
are on average distributed on some regular lattice, defined by the primitive vectors a,,a,a, the
integral over k in equation (13) reduces to a sum [23] and we can write

@L+1)
Bv’k,

Pr®) = ¥ (exp(-ik.¢) DEQ) W3(@)) expli k. D) yy(@),  (16)

kL omnd

with k a point in the reciprocal lattice. More explicitly

k =2u[hb +hb +hb]), (17

where k; are integers and the reciprocal lattice vectors b, are
b, =(a,xa)lv, (18)
a.b =3, {19)

with /4, j, k an even permutation of 1, 2, 3
v, = 8.3, X &, (20)

is the volume of the primitive cell in the real lattice. In the special case of an orthorombic lattice,
where 8, L a, 1 a, can be taken along x, y, z we have

k=2nlnd’x+nd’y+nd’ z], @0

where 4, are the lattice spacings in the three directions and r, are integer. We shall study this
important special case later on,

Equation (21) is useful to see how order parameters can be introduced in rather general
situations. However, il is too complicated to carry around in the present form and in the remainder
of this chapter we shall treat special cases, trying 1o understand their significance in detail. We
shall consider first pure positional order, the orientational order in rigid molecules, thea positional-
orientattonal and internal order.

3. Purely Positional Order

Systems of spherical particles can have purely positional order when they armange somehow on
a lattice. In complex liquid crystal systems the other degrees of freedom will ncrmally be present.
However, if we wish to concenirate on regularities in the positions, we can define purely
transtational distributions as

P(r) = [ 424D P(r,0.0) /Jdrdﬂdﬂb P(r,Q,D) (22a)



=y (exp( -ik. r‘)) exp(i k.r) ‘ {22b)

where
{exp(-ik. 1) 23)

are the purely translational order parameters. The case of full three dimensional order is more
periinent to molecular crystais, but liquid crystals present many systems with order in one or two
dimensions. Let us now see a simple example in detail.

11. ONE DIMENSIONAL POSITIONAL ORDER

We consider one dimensional translational order such as that presented by the distribution of
molecular positions along the director (z say) in a smectic A or a smectic C, so that P(r) reduces
to P(z). When this ordering is perfect the positional distribution function P(z) consists of a series
of Dirac deltas (the so-called Dirac’s comb) separated by the lattice spacing d. If the order is not
perfect the peaks of the distribution will become broader (see figure 1). In the limit of no
positional order (i.e., a nematic) the distribution becomes flat. For a smectic A-like system such
as that in figure 1 P(z) remains a periodic function of position z,

PG) = Pz + d). (24)
Incidentally we nole that strictly true order in one dimension should not exist (see, for example,

#2)

Figure 1. A system wilth incomplete positional ordering in one dimension; on the left we have the
probability distribution P(z).

[24]). Since smectics exist quite happily anyway, the contradiction has been resolved with the
hypothesis, apparently confirmed experimentally by high resolution X-ray studies, that the order
decreases very slowly with the layer separation [25-27). For any practical purpose, we can
certainly consider smectic A phases as periodic structures. This implies that we can limit ourselves
to considering P(z) with 0 < z £ d. Moreover we can expand P(z), like any other pediodic function,
in a Fourter series, [17] i.e., we write it a5 a combination of sines and cosines. If the distribution
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is an even one, like that for a smectic A it will suffice to consider a basis of cosines, since these
and not the sines have the correct symmetry. We have therefore

P}y =Y p, cos(2rnz/d). (25)
"

The p, coefficient can be easily obtained by multiplying both sides of this equation by
cos(2nmz/d) and integrating to give

L‘ dz P{2) cos(2mmz/d) = ; 1A L‘dz cos{2rn,z/d) cos(2n mz/d), (26a)
=p.db, 5., +5,)/2 (26b)
where we have used the orthogonality of the cosine functions. We find, therefore,
p, =d” L‘ dz P(7) @27
and
p, = (2/d) dezP(z) cos(2mmz/d) (28a)
= (2/d) < cos(2Znmzid) > m> Q. (28b)

This implies that the p,, coefficients are positional averages of the Fourier factors, by using the
definition of P(z). The averages

1, = < cos(2nmz/d) > (29)
represent our sel of positional order parameters [14,27,28]. We can, in turn, write P(z} as
P(z) =d? + (2/d)< cos{2nz/d) > cos(2nz/d) + .. (30a)
=d? +(2i)Y, 1, cos(2nn,z/d). (30b)
n

The purely positional order parameters can be obtained from X-ray diffraction as described in
[27,28].

3.2. TWO DIMENSIONAL POSITIONAL ORDER

Two dimensional positional order can be found, ie., in certain discotic phases, where we have
celumns of mesogenic molecules which bave ideally no positional order inside the column, while
the cohumns themselves are arranged on a hexagonal (D,,) or rectangular lattice (D,y) [6]. For a
D, rectangular discotic phase we should have, choosing the z axis along the columns axis that the
k vector lies in the (xy) plane and

Plxy) =(d,d)" +(4/d, d’_)E (cos(2n n xid ) cos(2m n, y!dy)) cos(2rn x/d,) cos(2nn yid,) (31)

with n, n, > 0.



18

4. Orientational Order

When the molecule is rigid and the system umiform, so that only crientational degrees of freedom
are relevant, the general distribution P(r{L®) reduces to P{{2). More generally we can define a
purcly orientalional distribution

P(SY) = ] drdd P(r,0,) /[draﬂd@ Pr,0). (32)

For the purely oricntational case equation {13) reduces to an expansion in Wigner rotation matrices
[14,29]

PO = Y P DD (33)
Lom.n

This equation can be simplified by using the symroetries of the mesophase and of the molecule,
if any. We have given elsewhere some geperal prescriptions for doing this [14] using group
theory. The procedure consists essentially in projecting onto the totally symmetric representation
of the point proup of the molecule and of the mesophase [30-33]. The action of the various
symmetry operations has been considered as a combination of rotations and inversion, following
Blum and Torruella [31). Essentially the same method has been used by Pick and Yvinec for the
distributions in molecular crystals [33]. Here we wish to discuss in detail a few simple examples,
that are the most imponant m practical situations.

4.1. CYLINDRICAL MOLBCULES IN UNIAXIAL PHASES

We shall treat the case of uniaxial mesophases (i.e., nematics, smectic A or columnar with
transverse positional disorder). We shall assume the axis of this cylindrical symmetry, the director,
to be along the Z laboratory axis. Thus rotating the sample about Z no observable property will
change. Thus the probability for a molecule to have orientation (afy) should be the same
whatever the angle «, since the angle « describes a rotation around the laboratory Z axis. Here we
also make the assumption, very ofien made in the literature, that the molecules possess uniaxial
symmetry. In this case the distribution should not depend on the angle y which is defined as a
rotation around the molecular z axis, so that

PlaBy) = P(B), (34)
with the normalisation condition

L‘ dfsin fP(f) = 1. (35)
If the molecules arc unable to distinguish head from tail we should have

P(f) = P(n - B). (36)
For nematics this corresponds to the experimental finding that on turning the aligned sample
upside down no observable property changes. The situation may be different, ¢.g., in monolayers,
where an asymmetry exists. The first thing we can do to identify a set of parameters that we can
us¢ in lien of P(P) is 1o expand the distribution in a basis set of functions orthogonal when
integrated over sin Sdf. Such a set is that of the Legendre polynomials [34] P, (cos 8), for which
we have

19
L" dp sin B P (cos B) P, (cos B) = 2H2L + 1)}5,,. 37)

Clearly these functions correspond to a special subset of the Wigner rotation matrices used in the
general expansion in equation (6). The explicit forms of the first few Legendre polynomials are

Pfcos f) = 1, (38a)
P,(cos B) = cos B, (38b)
Pycos f) = (3cos’ B - 1)/2, (38¢)
Pcos f) = (Scos’ B - 3cos f)/2, (38d)
Pfcos B) = (35cos' B - 30cos® f + 3)/8. (38¢)

As we see from these first few examples, Legendre polynomials are even functions of cos B if
thetr rank L is even and odd functions if L is odd [34}, iLe.,

P,(cos p) = (-Y P,(~cos ). (9
Thus we only nzed to retain even L lerms when expanding the even distribution P(f), (see

equation (36)), in terms of P,(cos 8) and we can write

P(A) = Y p, Pfcos ) ;L even. (40)

The Jth coefficient in the expansion can be easily obtained using the orthogonality of the basis
set. Multiplying both sides of equation (40) by P,(cos §) and inteprating over sin fdf gives

L" dpsin B P(B) P,(cos f) = ): », L’ dB sin B P,(cos B) P,(cos ), (41)
we find the coefficients in equation (40) as
P, ={2 + )2} <P, >, (42)
where
<P, > = [ dpsin pP,(cos ) P(B). (43)

It is apparent that the knowledge of the (infinite) set of < P, > compleiely defines the distribution
and that the Legendre polynomials averages < P, > represent our set of orientational order
parameters. We can write

P(B) =(172) + (5/2) < P, > P(cos B) + (92) < P, > Pfcos f) + ... . (44)
The first non-trivial term contains the second rank order parameter
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<P, >=<@Bcosp -1)/2>, 45)

which corresponds exactly 1o the S order parameter introduced by Tsvetkov [4] (see equation (1)).
It is worth stressing that equation (40) is exact as an infinite expansion, but that in practice it does
not give a very good approximalion to F($) when we truncate after the first few terms. For
instance if we have < P, > = 0.6 the P(f), as given by the orthogonal expansion truncated at the
second rank level, is shown in figure 2 as the dashed line. We see that P(f) constructed in this
way can ¢ven become negalive, which is cenainly not physical when we recall that P(f) is a
probability, Notice that amy property depending only on < P, > is calculated correctly using this
P(B). However, < P, > and the higher order parameters calculated with the second rank
approximation are zero, because of the ornthogonality of the Legendre polynomials. Thus the
orthogonal approximation is exact for terms that we have included but very bad if we want higher
terms,
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Figure 2. The orientational distribution P(5) comresponding to <P,>=0.6 as oblained from the onht?gonal
expansion truncated 1o second rank (dashed line) and from (the maximum entropy procedure (CODUDUOUS
line).

4.2, MAXIMUM ENTROPY

The problem of finding the best, in the sense of least biased approximation to the whole P(f) or
in general P(Q) starting from a knowledge of a set of order parameters < £, >, say up to rank L',
can be approached using information theory [35-37). In this approach the most probable
distribution is defined as that maximising the entropy associated with the usual thermodynamic-
like formula

i) = - [ @ P2} PR.a)), (46)

with respect to the set {a,}. It has been shown using the standard lagrangian multiplier technique
that the best distribution in this respect has the form [35-40]
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P(p) = xv{);;a P,(cos p)). (47)

where the cocfficients a, are obtained by imposing the constraint that the < P, >, L =10, .., L’
calculated from P(f) have the known values. In particular we have the normalisation condition
<P, > = |, The information theory approach is in a way an a posleriori one. It allows the
construction of an approximate full distribution from the available information bul on the other
hand it can make no prediction as to what the distribution will be at, say, a different temperature.
in addition, the approach does not say anything as to the molecular origin of the distribution itself.
It is a way of translating the experimental information inlo the most probable distribution
compatible with the dalta tbemselves. As more and more order parameters or, in general,
observables become available the estimate of P(f#) can be refined. The method does not rely on
a priori assumptions and as the mmnber of terms mgreases the sequence of maximum entropy
approximations converges o the true one [37]. It is also important to stress that at any level of
approximation the distribution obtained is positive and of exponential character. It may be worth
discussing m some detail the differences between the orthogonal and the maximum entropy
approximations [29].

4.3. EXAMPLES

We now consider briefly what inferences can be made about the molecular organisation starting
from a kmowledge of a small number of order parameters and in particular of < P, >, < P, >,

4.3.1. Knowing < P, > only. To start with we suppose that only the second rank order parameter,
< P, >, has been determined. The maximum entropy distribution associated with this < P, > is

P(B) = Z;" expla, P,(cos B)], (48)
with the normalisation constant
z, - L‘ dpisin p expla, P(cos B, (49)
and with @, determined by the condition
<p>=z L‘ dp sin B P,(cos B) expla, P(cos B)]. (50)

This equation can be solved for @, in terms of < P, >. In figure 3 we show the resulting curve for
positive < P, > as the full line. We see that for positive < P, > the distribution is peaked at
£ =0, so that the majority of molecules will be parallel to the director. This is normally the casc
when we dissolve an elongated molecule in a nematic.

A simple analytic approximation for a, in terms of < P, > is obtained by expanding a, in a
power series in < P, > {41]

a, =5 <P, >-(25/T) < P, > + (425149) < P, > - (S1875/3773) < P, >* « .. . (51)

The series is, of course, divergent at < £, > = | but it can still be useful for order parameters
realistically found in nematics. The very simple approximation
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a, =5<P > (52)

15 useful to obtain a good idea of @, and thus of the distribution at least up to < P, > = (.6,
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Figure 3. The founh rank order parameter <P,> versus <P,> as obtained from the purely second rank
distribution equation (48) (continuous line). We also show b approximate analylic expression
<P,> = 57 <P,>* (dashed line),

Having determined a, we can immediately plot the distribution P(g8). For example, if we assume
< P, > = 0.6, as in the previous section, we obtain the approximate maximum entropy distribution
plotied as the continuous line in figure 2.

We notice that @, becomes negative as < P, > changes sign and that the corresponding
distribution becomes peaked at § = <. Physically this will normally happen when we study a disc-
like molecule dissolved in a calamitic nematic, since in this case the molecular z axis (the disc
axis) is preferentially aligned perpendicular to the director,

432 Knowing < P,> and < P, >. We now turn to the case where both < £, > and < P, > have
been determined. The first thing we might try is to see if the distribution in equation (48) obtained
using just the information on < P, > is consistent with the observed < P, >, Tius we would use
the distribution generated by the a, obtained from < P, > and calculate the fourth rank order
parameter < P, > by integration. The curve obtained is shown in figure 3 as the continuous line.
A simple approximate analytic form for this relation can be obtained by expanding < P, > in
powers of a, and substituting into equation (51). This gives

<P, > =(S/1) < P, > - (2000539) < P, > + (35650/49049) < P, > + .., (53)
~ (S/7) < P, >, (538)

The series contains large terms of alternating sign and is poorly convergent unless terms are
properly grouped together. The very simplest approximation namely equation (53b) [41] found by
retaining just the first term, is actually a good approximation up to < P, > = 0.6 as we see from
the dashed line in fgure 3. When < P, > does not fall on the curve in figure 3 we can construct
a distribution like equation (47 with L = 0, 2, 4. To do this we have 1o find g, and a, from our
given < P, > and < P, >. The first thing to observe i that the domain of the functions a,(< P, >,
<P, >), af{< P, > < P, >) consists of the set of allowed values of < P, > and < P, > It 15 not
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difficult 1o show, using Schwarz's inequality [34] that

<cos B> S <cos' f><<cos? f (54)

The explicit form of < P, > and < P, > in equation (38), together with these inequalities yields
[42]

(35/18) < P, >* - (5/9) < P,> - (M18) S < P, > S (5/12) < P, > + (W12). (59)

These two inequalities define the region of space where possible values of < P, > and < P, >
consistent with their respective trigonometric form should lie, It goes without saying that it makes
sense to check that experimental values do fall within this area. The coefficients a,, a, can be
obtained by solving the non-linear system

<P, > =25 [*dpsin P (cos B)expla, Pfcos B) + a, P (cos p)] (562)
<P >=z [ dp sin p P (cos B) expla, P,(cos §) + a, P(cos B)] (36b)

with
Zu = | dpsin B exela, Py(cos ) + a, (oo B (57)

20+

15 |

Figure 4. The cocfficients a, and a, in the distribution P(f) expla, Py(cos B)+4, P,(cos B)] shown as a
function of <P,> and <P, > [43].

The cocfficients obtained [43] are shown in figure 4. Notice that, although we expect < P, >
greater than < P, > as it was the case in the Py(cos §) distribution (see figure 3), a range of
solutions exists also for < P, > preater than < P, >, Indeed an interesting case is that of
<P,> > <P,>, with the values falling on a curve like the continuous line in figure 5. This unusual
behaviour has been found to be consistent with fluorescence depolarisation data of diphenyl-
hexatriene in DPPC and DMPC membranes vesicles [44]. In tumn the behaviour agrees with that
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predicted by a modet with pure P {cos f) effective potential [45], which gives a distribution
P(B) = 2. exp[a, P (cos P)], (58)

where

z, = L‘ dp sin f exp[a, P (cos B)]- (59)

<P>
0.8

o.u

T Y T r T T rT [ Y rr[ o1

0.2

[ O U RO A B AT E (Y S AR Y O B O 1

0.0 [P S N0 N0 T U I T S U [ T OO Y N A
2.0 0.2 0.% 0.8 0.8 1.0
<p,>

Figure 5. The dependence of the fourth rank order parameter <P,> on the second rank <P,> for a purely
fourth rank distribution equation {58) (continuous line). We also show the analytical approximation in
equation (61) as the dashed line [29].

We wish to obtain also for this limiting case a simple approximation to the < P, > versus < P, >
curve. We start by Taylor expanding the expressions for < P, > and < P, >, ie,

<p >=2 L‘ dfsin B P,(cos B) expla, Plcos B)], L =2, 4, (60)

with respect to a,; reversion of the series for < P, > gives 4, in terms of < P, >. Substituting in
the series expansion for < P, > we obtain < P, > i terms of < P, > and by fusther reversion

<p >V cpsn_ O cps, TUB _ poa, (6D

o0 260 7 1007760770

This simple power series in < P, >* gives a good representation of the curve for < P; > up to 0.9.
In figure 5 we show the analytical approximation to the < P, > versus < P, > curve from the
truncation in equation (61) (dashed line) and the curve obtained by direct numerical integration
{continuous line). Using equation (61) it is quite easy to test if a set of < P, >, < P, > values has
a pure P(cos B) behaviour. An example of the pure P(cos B} distribution is plotted in figure 6.
Notice that the probability shows a maximum not only for melecules parallel to the director, bul
also a smaller one for molecules perpendicular to it

LANNE SRS D B NN SR BN B IR B I S p SN S |

1] FU A R I AR
[1} 30 60 80 120 150 180
B

Figure 6. The angular varation of the distibution P(B)  exp[a, P(cos )] with a,=2.
4.4. NON-CYLINDRICAL MOLECULES IN UNIAXIAL PHASES [29]

[n the last section we have gone into some detail in treating cylindrically symmetric objects. This
will now allow us to skip some explicit steps, since the logic here is the same, even though the
algebra is somewhatl more complicated. To start with we notice that when the rigid molecule of
interest, which we still assume to be dissolved in a uniaxial phase, cannot be treated as a rod-like
or a disc-like particle, we need an extra angle in defining its orientation. Thus if § is the angle
between the z axis of the particle and the director, the extra angle, y is an angle of rotation around
the molecular z direction [17]. The probability of finding the motecule at a specific orientation,
P(By), can be expanded like any other function of the two Euler angles By, in a compiete basis
set of spherical harmonics. Thus we find

P(fy) =Y p,., DulBY), (62)
Ln

where we have chosen the Wigner matrix notation D (8Yy) [17]. Orthogonality of the basis set
immediately permits determination of the coefficients p,,, which gives

P(BY) = (4m)” ): fj (2L + 1) < D' > DE(BY). (63)

ae-L

The set of averaged Wigner orientation matrices < D, > allows a complete characterisation of
P(By). The genenrally complex quantities < D/, > are called orientational order parameters (see,
for example, [15,16]). The complex conjugate of a Wigner function isDLL(€2) = (- DL _(€).
Since the distribution P(By) is real, then

<DE> =(r <DL >, (64)
and the number of independent quantities is comrespondingly reduced. At second rank level, L = 2,

there are at most five independent order parameters < D, >. The five order parameters could
also be chosen as the independent components of the cartesian ordering mairix S first introduced
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by Saupe [46]
< (3/2) s’ fcos' ¥y -% > < sin’ Bcosysiny > < sin fcos Peosy >
5= <sin’Pcosysiny > < (3/2)sin’ fsin® y-% > < sin fcos Bsiny >|; (65)

< sin fcos fcosy > < sin Bcos Bsiny > <(3Dcos Bp-% >
the matrix is traceless and symmeiric. Results can be easily converted from the Saupe 1o the
Wigner rotation matrix form [14]
32 Im<Df,> -J3/2 Re< Dy, >
-J6/2 Re<DL>-%<D%> 32 Im<D} >

V32Im< Dl > <Dl >

V612 Re< D}, > V<Dl >

S = -/37Z Im< D%, > (66)

-3 Re< D>

We call the ordering matrix frame the principal axis system of S, sometimes obvious by
symmetry, where S is diagonal.

It should be stressed that other equvalemt formulations can be given to the problem of
describing orientational order. A set of second rank ordering constants used particularly o optical
spectroscopy [47] is the set of orientation factors

K, =<(Z.3)(Z.b) > ab=xy,z (67)

L)
where &, b, are unit vectors that can be parallel o the %, y or 2 molecular axes and Z is along the
director. For instance K_ = < cos’ §>. The K and § are simply related by

S, = (3K, -3_)/2. (68)

The cartesian formulation can be extended to higher ranks both for the § matrices [14] and
orientation factors [47] although it becomes progressively more complicated than the spherical one
as the rank increases, Whatever the formalism used the relevant order parameters for molecules
of a certain point group can be listed. A fairly general treatment of the allowed order parameters
for varions moiecular symmetries has been given elsewhere [14]. [n practice, in a great number
of practical cases, the assumption is made that the molecules of interest are biaxial particles. This
case, which includes many molecules of interest in optical studies, Le., pyrene etc. will now be
discussed in some detail.

4.5. BIAXIAL MOLECULES

First, we choose our molecular frame with axes along the three C, axes. Since we can turm our
biaxial particle upside down without changing anything we only need to retain in equation (63)
functions that are invariant for this transformation. Remembering [14,17] that the spherical
harmonics D ((fy) are multiplied by (-)* under the same operation, we see that we only need 1o
expand in Wigner rotation matrices of even rank L. The first few are

Do BY) = 1,

Dgo(ﬂ'f) = P;(COS ﬁ):

(69a)

(69b})
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DoY) = % sin' Bexp(si2y), (6%)
Dy BY) = P(cos B), (69d)
Di(By) = /10 {14 cos* g - 14 cos' g + 3cos® g}sin’ g oxp(%i2y), (69¢)
DLABY) = /70 cost g sin* g exp(5idy). (690

Since the principal frame of the ordering matrix is determined by symmetry, at second rank level
!here:are two relevaat order parameters, < Dy, >, Re < DI, > or, eg, S, and S, - S,y While
< Dy, > measures the alignment of the z molecular axis with respect 1o the director, as we have
seen for cylindrical molecules, Re < Dy, > is a biaxiality parameter. It provides the difference
m ordering of the x and y axes for the molecule in that liquid crystal solvent and at the given
thcrmody_mmjc conditions. A perhaps more immcdiate interpretation can be obtained by
constructing approximate molecular distribufions consistent with a given set of order paramelers.

4:5.1_. M_m‘i‘mum Entropy Diswributions. If a set of order parameters < Dy, > is known, the best
distribution compatible with them is, according to information theory [36]

P(BY) = exp[E aL.Df.(ﬂv)], (70)
La
where the coefficients a,, are obtained by solving the non-linear system of consistency constraints
<D, > = ["dpsinp " dy Dy exp[ ¥, DL(AY] ()
Ln

and gy, from the normalisalion constraint < DY, > = 1.

Figure ‘;‘5 An example of the orientational distribution P{By) for a biaxial molecule with <Py>=04 and
Re <Dy >=0.1¢a) or -0.1(b) [29].

For a biaxial solute where < Dy, > and Re < D¢, > are determined, we have simply
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oxp a[P(cos f) + £ Re Dy By)]

PgY) = — = - ,
[ dpsinp [ dyexp afPcos p) + ERe Dry(BY)]

(72)

with a = a,, § = a,/a, The parameter £ is a measure of the deviation from cylindrical
symmetry, since it is zero for the special case of uniaxial molecules. To ilustrate the interplay
between order parameters and distributions, we show in figure 7 a few examples of distributions
corresponding to biaxial objects with < P, > = 0.4 and Re < Dy, > = £0.1.

In figure 8 we show a similar distribution for plate-like biaxial particles. In this case the parnicle
bas a greater probability of having the z axis perpendicular to the director, with the plate plane
tending to be aligned parallel to the director. The sign of the order parameter Re < D), > tells
us which of the two axes in the plane is most aligned. It is interesting 1o notice that biaxiality
effects are somewhat magnified for oblate molecules. If we remember that

Re< D2, > = \(3/8) < sin® flcos 2y >, 73
we see that for a rod-like molecule as the alignment increases § approaches on average more
closely to zero, as will sin’ § and ultimately Re< D), > itself. In contrast for an oblate-like
molecule, B in a similar situation approaches I-and sin’ 8 approaches 1, thus allowing the y
dependence to emerge.

a b
1. 1 L
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Figure 8. An example of the onentational distribution P(8y) for a biaxial molecule with <P,>=-0.2 and
Re <D}, >=0.1 (a) and -0.1 (b) [29].

Notice that here we have no means of knowing if £ is a molecular properiy or not. The
maximum entropy formalism just converts order parameters into distributions, without offering
a molecular interpretation to what is observed. However, equation (72) is formally identical to that
obtained with molecular field theory, i.e., stafting from a dispersion interaction [48]. In that case,
the parameters a, £ do indeed have a molecular interpretation. For dispersion forces £ = 24,
where A is a molecular constant

A =32 (a, -0,)/(20, -0, -a), (74)

29

expressing the deviation from cylindrical symmetry of the solute polarisability @. Curves of
Re < Dy, > versus < Dj, > or equivalently of S, - S, versus S, at constant £ are often used
when analysing experimental data [12]. In figure 9 we see such a family of curves. We shall now
try to find some approximations for the biaxial order parameters calculated from integration over
the distribution in equation (72). To do this we consider £ fixed and expand < P, > and
Re< D}, > in tems of . Eliminating a between the last two equations and regrouping the terms
we find [29]

5g* -2
Re< Dg, > =<P2>(<P,>—1)2[_§. + 528 £ <P, >
(75)
, 258 - 1308* + 174

196

<P, >+ }

We see that the performance of the simple equation (75) as the dashed lines in figure 9 is quite
reasonable throughout the range and very goed for < P, > up to 0.6 - 0.7.

LA S B A R B R |

Re <D}, >
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Figure 9. A plot of the order parameter Re < DY, > versus < D¢, > for the biaxial distribution in equation
(72) and t'qr £=0.2 (a), 04 (b), 0.6 (¢) a5 calculated by numerical integration (continuous lines) and from
the approximale analytic expansion equation (75) (dashed lines) [29].

4.5.2. An Exampfe. In [49] we have determined, through deuterium NMR, the ordering matrix for
chylenc dissolved in various nematic solvents. The results for the second rank order parameters
in four nematics at different temperatures are shown in figure 10. The molecular coordinate system
assumed has the z axis perpendicular (o the perylene plane and the x axis in the direction of the
peri bond. We sce that the behaviour in the various solveats is different, so that order parameters
are in general solute-solvent rather than just solute properties. While on the one hand this
represents a source of complication, it also offers an interesting handle towards probing specific
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~056 -04 -~03 —02 -0.1 0.0

Figure 10. Plots of (S, -5,,) against S, for perylene in the four liquid crystals: E63 (0), 152 (a), ZLI1 167
(hourglass), ZLI2585 (0). The solid lines are theoretical predictions for the values of the molecular
biaxiality parameter (cf. equation (74)) A=-0.05 (a), -0.10 (b), -0.15 (¢ [49].

iqlcracl‘ions in the fluid phase {50]. The construction of distributions corresponding to these
different situations can help in making sense of what the most probable orientation is. As an
example we show in figure 11 the probability distributions for perylene in ZLI-1167 at the lowest
temperature employed.

1.
P

0.5 -

Figure [l. The probability distribation P(fy) for peryiene in ZLI1167 at <P,>=-0424,
8, =5, =6 Re<D}>=0340,

3
4.6. EXPERIMENTAL DETERMINATION: LINEAR DICHROISM

We consider an example of the experimental determination of second rank onentational order
parameters. We shall choose the anisotropy in the optical absorption, ie., a linear dichroism
experiment [29], but the treatment 1s similar for other techniques. Typically an experiment consists
of performing measurements of anisotropy on a suitable tensor property. In the present example
the absorption of light by a solute relative to a certain electronic transition is determined by the
transition moment g [47]. If for simplicity we deal with a single transition from a state with
wavefunction ¢, to a state , then the transition dipole moment is the matrix element between
these two states of the electric dipole operator M, ie, = < ¢, | M| ¢; >. In general there will
be, of course, complications arising e.g., from overlapping transitions etc. with a well-delined
orientation in the molecular frame. The probability of absorption of plane polarised light with a
polarisation direction e does not depend directly on u but rather is

Ph. o < (E-F)J >,

= E < eneh‘un"ub >, (76)
ak

S >RTRI
ab

with @, 5 = x, y, z and where we have introduced the polarisation tensor [51]
E -e®e, a7

containing all the experimental geometrical information and the absorption transition tensor
conaining the molecular nformation

This equation is usefil because il stresses that we are really looking at a second rank tensor, not
a vector. We could now measure the absorbance paralle] and perpendicular to the director and try
to relate it to the order parameters. It is convenient to do this using spherical, rather than cartesian
tensors. In practice for second rank symmetric cartesian tensors this can be done explicitly

A“=~%A°'°—%A“ - A, (793)

Agy = ;(A Y LR (79b) «

4, - %(Az-“ e (79¢)

Ay, = - Lo o L go Lo, oy (79d)
V3 V6 2

Ay, = _;(A“ LR {79¢)
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A, =4 e |2 g (799
‘/-_,T 3

where the so—called imeducible components A" of rank £ and component m have, under rotation,
the simple transformation properties

ALl =Y, Dol(@f¥) Ao, (80)

with LAB and MOL subscripts referring to the laboratory and rotated frame. In pariicular the term
A% = —a/\f3, where a is the trace of A, is a scalar. The averaged measurable irreducible
components will be

<AL > =Y < DIefy) > Ao, (81)

For a uniaxial phase invariance for rotation arcund Z requires 8, The measured absorption
parallel to the director can be written as

< Al >E< Azz ZLas»

a +(23) < 4% >, (82)
a+ @)Y <Di. > A,
Quite similarly the measured perpendicular component will be

<A, >=a-J(I6) Y <D;, >4 (83)

For a biaxial molecule the experimentally measurable anisolropy of < A > is
<4,> -< 4, > =B {4k, < Dl > + 2Re(d i, < D; ). &4)

Thus the measurement of at least two anisotropy values is required to determine both< Dy, >
and < D;z >. Moreover the parameter of deviaticn from cylindnical symmetry, < D}, >, only
becomes measurable when the tenser A has an off-axis component so that 4 # (0. If the molecule
bas effective cylindrical symmetry, in the sense that the order parameters< Dg, > =
< Dg > 8, then we have

<P > (<A > =<4, > [ [y, - (4,00).) (85)

We should be aware that the order parameter < P, > measured for a molecule dissolved in a liquid
crystal is clearly not the same as that of the pure liquid crystal, since solute-solvent terms in the
anisotropic potential acting on the molecule are different from the solvent-solvent ones. This also
means that except for special cases where the solute is very simiiar to the solvent, probe
techniques give information on the behaviour of solules in anisotropic phases and thus only
indirectly report on the phase itself. While this has been perceived as a limitation of these class
of measurements, there is instead a lot of scope for ieamning abowut the behaviour of interesting
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classes of molecules in dissolved liquid crystals.

The order parameters change with temperature and jump to zero at the nematic-isotropic
transition. This phase transition is a weak first order one and accordingly the order parameters
present a relatively small jump. Typical values for < P, > at the nematic to isotropic transition are
in the range 0.3 - 0.4. Order parameters for different liquid crystals, when plotted against the
reduced temperature 777, with 7,; the nematic-isowropic transition temperature follow fairly
closely a universal curve [2). It is quite clear that in view of this and of the pronounced
temperature dependence it is advisable to compare order parameters for different molecules at the
same reduced temperature.

4.7. ORIENTATIONAL ORDER IN BIAXIAL PHASES
The purely orientational distribution will depend, in general, on the three Euler angles. Thus
P@py) = Y Prn. Du2BY), (86)

Lma
and the order parameters will be averages of the Wigner rotation matrices < DE >. We shall
only consider the case of rigid biaxial molecules in biaxial phases, where application of the si;nple
syrametry arguments mentioned previously shows that we can have order parameters < Dy, >,
Re< D}, >, Re< Di, >, Re < D}, + D%, > in the principal axis system of the liquid crystal
and of the molecule.

Experimentally we can consider once more equation (80) and the averages in equation (81). In
an ideal experiment we can determine all of the components < 4,, >, with ab = X, Y, Z, and then
diagonalise the tensor A to find the liquid crystal principal axis system. In practice the
measurements are more easily performed on an aligned system, where we imagine from the start
to be in the principal system. In this case the surviving measurable components of a second rank
tensor would be

<Ay > =- —I-Au'o - (< thn.n > A:n'um. +2Re < D;; > A::on.)/\/g

V3 (&7)

. 1e
+ (Re <D220>A:4'00L "'Re‘{'D:; + Dy, >A:|'zo|.

<A, > = —_‘/I_A” - (< DI, >AX, +2Re <D} > A6
3 (88)

-(Re < D;; > A:'-(uor_ +Re < Dzz; * Dzz-‘z > A:fOL
1

<dy > =- f’m 3 (< DY, > AMy +2Re < D3 > Ao, (89)

for a biaxial solute dissolved in a biaxial phase formed of biaxial particles. As we see the order
parameters describing the phase biaxiality i.¢., Re < D2 >and Re <D} + DI, > cause < Ay, >
10 be different from < A4, >. Notice that the observation of phase biaxiality does not require an
off-axis molecular tensor or even biaxiality in the molecular tensor (i.e., it can be oblained even
when we have Ao, = 0). Indeed phase biaxiality can often be demonstrated using a uniaxial
probe. For example the deuterium NMR spectrum of dewteriated benzene is often used. The phase
biaxiality can determine the quadrupelar splitting of perpendicular lines in the spectra in an X and
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a 'Y pair, as verified experimentally in various systems [6,12,52]. In a real situation observation
or not of mesophase biaxiality will, of course, depend on the relative magnitude of the terms in
equation (87} - (89) and on the sensitivity of the experiment. The splitting of the perpendicular
lines in an X and a Y pair will be proportional to

2Re < DX > g%, (90)

where the g%, are spherical components of the quadrupolar tensor [12].

5. Positional-Orientational Order in Uniaxial Phases
5.1. CYLINDRICAL MOLECULES

Here we recall the description of ordering in systems with a layer structure and positional disorder
inside the layer, such as a smectic A phase. We assume the phase to be uniaxial around the z
laboratory axis and to be made of cylindrically symmetric particles. We also assume the centres
of mass of the molecules to be distributed at random in the xy plane while they may possess some
regularity (layering) along the z direction, The single particle distribution function can thus be
written as P(z, cos 8) and expanded as

Piz,cos f) =Y. ¥ P... P(cos ycos(2nnz/d), L even, o1

L=0 n =0

in a product basis set of Legendre polynomials for orientations and Fourier harmonics for position,
We assume the distribution to be normalised as

L‘ dBsin B L" dz Pz, cos ) = 1. (92)

Orthogonality of the basis gives at once the coefficient p,,,,
Pr,, ={@L + UM}J dz dfi sin B P(z, cos B) P (cos f) cos(2nn z/d), (93a)
={(2L + 1)/d} < P(cos B)cos(2nn,z/d) >, n, * 0, {93b)

where the angular brackets have been used to indicate an average over P(z, cos B). The first few
lerms are mather instructive, we have

P = 1/d, (94a)

pz;o =5 <Pz>/(2d): (94b)

Py = < cos(2rnz/d) >/d, (94c)
=1/d,

Py =5 < Pfcos Pycos(Zrz/d) >/d, (94d)
= 50/d.

These first terms show the three kinds of order parameters present in a smectic phase, Thus,
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< P, > is the usual orienlational order parameter familiar from work on nematics, By contrast
T=<cos(2rnz/d) > is a purely translational order parameter telling us how effectively the
molecules are arranged m layers. The last type of parameter, o, is a mixed term related to the
extent of translational-orientational coupling [27-28].

52. NON-CYLINDRICAL MOLECULES

We now consider a rigid non—cylindrically symmetric molecule in a system with a layer structure
and positional disorder inside the layer, such as a smectic A or a smectic C phase. The probability
of finding the molecule al a specific position-orienlation, P(z,fv), can be expanded as we have
seen earlier in a complete basis set of spherical harmonics. Thus generalising equation (62) we
find

P(z.BY) = 3. Py, cos(2nn z/d} Dy (BY). (95)

The onthogonality of the basis set immedialely gives the coefficients p,,.; we can thus write the
distribution as

- L

1 1 2L+ 1 ez,
Pz, = _ < COS| VD, >
@A) 4nd+2n§:§,§ g < Sl— D 6
2
x cos{ “:'Z)D;my), n %0,
27:!:‘2

YDZE > allows a complete

The set of positional-orientational order parameters < cos(
characterisation of P(z, fy).

53. COLUMNAR PHASES
The positional-orientational distribution for a non-cylindncally symmetric molecule in a columnar

phase with some positional order of the ¢columns in the (xy) plane, i.e., a D, rectangular discotic
phase, with the column axes parallel to z, will be

1 1 2L + 1 2nn 2nn e
£ =__ " o« _ ~_ % Yy D
ROREY - gy * o DI IE 7 (cos( T e .,.(pv))
o7
x cos( znn‘x)COS( 2M’y)D‘(ﬂ7)
--d-:'-— dy G E]
when n, n, # 0 and
L‘ dfsin p LG dy Lﬂ‘ dx [:’ dy P(xy; By) = 1. (°8)

The positional-orientational order parameters
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2nn‘

d

2n n,

d)’

Prans, = {cos(

x) cos(

NDLB)). 99)

€Xpress any r_egulaﬁty in the two dimensional arrangement of the columns and the coupling to the
molecular orientation, If the mesophase is formed of disc-like particles we can reduce the
distribution to

1 2 o+ 1 2nn 2nn
Plxy; = + = L
wh =gz LT T {eost d‘ x)cos(T,y)PL(cosﬁ)>
2nn, 2nn (100
X cos{——x) cos(—_Ty) P,(cos B),
T dy
with
|y dpsing [} ax ¥ ay Pieysp) - L. (101)

6. Rotameric Molecules

We now wish to mention briefly how the present treatment of order parameters can be applied to
molecules with intemal degrees of freedom [16,21,53]. This is an important problem because most
molecules of practical interest {54,55] including molecules forming liquid crystals possess some
intenal flexibility. The problem has received attention by various authors (see, for example,
[12,16,20,56]). Here we shall only consider one mechanism for internal flexibility, ie., infernal
rotation, since this often represents the most important mechanism to large changes in molecular
shape. We shall give a specific example, that of a molecule with one degree of internal rotation
[21]. The molecule we have in mind is made up of twe rigid fragments, i.e., two rings. We place
a molecular frame M, on one of the fragments and we introduce an angle ¢ giving the oricntation
pf one ring wilh respect to the other. In a non-uniform system, i.e., if the molecule is dissolved
in a smeclic A solvent, the state of the molecule is a positional-orientational-conformational one.
We can definc this state r,{),4 by giving the position r and the orientation Q = (M, - L} of frame
M, with respect 1o the laboratory frame together with the internal angle ¢. Accordingly we write
l_.hc probability of finding the molecule in a certain positional-orientational-conformational  state
i terms of the probability of finding the first fragment at orientation ©Q with respect lo the
laboratory director frame and the second fragment at an angle ¢ from the first, Le., P(r,Q.¢). This
one panticle distribution is then expanded in a composite Wigner-Fourier basis set. Ifthe molecule
Is In a uniaxial smectic A phase

|

Pz Bvy:d) =
(zBY:4) id

(102)

! . 2unz .
ey 1.21 2L + 1) peua Dal(BY) cos( — ) exp(-igd),

with
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. 2nn z

Ponnce = < DalBY) exp(igd) cos( ) > (103)
as the positional-orientational-conformational order parameters. We have, even in this simple
system [16], numerous types of order parameters, Le.,

Purely orentational

P;;n;a =< D;(M, - L} >. (104)

We have used the notation (B - A) to indicate the rotation from A to B, ie., here (M, -L) = Q.
This type of expansion coefficient is essenlially an ordinary orientational order parameter for the
molecular frame. It gives the average orientation of the reference fragment of the molecule with
respect to the director frame, whatever the conformation and the position.

Purcly intemnal

Panga = < expligh) >1q = 0,£1, 42, ... (105)

These parameters describe the ordening of the second part of the molecule with respect to the first
irrespective of the overall orientation and position. They are quite important since they can be
considered expansion coefficients of the rotameric distribution P(¢#) in the flud obtained by
integrating equation (102} over By;z.

ldzdﬂsinﬂdv P(zBY;9) (106)

] dzdpdfsin B dy P(Z;ﬁ'r;rﬁ).

The internal order parameters can be different from zero even in the isotropic phase if there is
some preferential orientation of the second fragment around the internal axis.
Mixed intemal-external order paramelers

< Dol BY) oxpligd) >. (107

P(¢) =

These parameters result when both L and g are different from zero in equation (103). They
describe coupling between internal and external degrees of freedom. A particular subset of these
parameters allows the recovery of purely orientational order paramelers for the second sub-unit.
We also have, of course, the other combinations, purely positional, positional-oricntational and the
following interesting ones.

Positional-conformational order parameter

Puan, = < explig) cos2nn,z/d) >. (108)

These parameters should describe the coupling between the internal degrees of freedom, and the
posilion in a smectic phase. For example, they could describe situations where the conformation
of the molecule changes as the molecule itself is displaced from the average layer position.

For a molecule dissolved in a uniform uniaxial phase, such as a nematic we have the simpler
orientational-internal distribution
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PBY:¢) = (V8x") 3 (2L + ) pe, DY) exp(-ig), (109)
Loag
where in general ¢ = 0, £1, 22, ... and we have retained the notation used in [16]). The angle 4,
with 0 S ¢ £ 2r is the dibedral rotation angle around the inter-fragments vector connecting the
two parts of the molecule. The orthogonality of the basis functions immediately yields the
expansion cocfficients as

Pae = < Da{By) expligd) >, (110)

where the angular brackets denote a conformational-orieniational average over the distnbution
P(fy.4)

The maximum entropy method outlined in section 4.5.1 can be generalised to yield the best
distribution compatible with a given set of order parameters. For instance if an experiment
determines a set of second rank order parameters p;w, this distibution will be of the form

P(BY;4) = exp[ a,, DY(BY) exp (igf) |, (111)

e

where the coefficients a,, arc obtained by mimimising the squared difference between the
measured quantities and those obtained by integrating this equation. The formalism has been
applied to an analysis of the proton NMR spectrum of 3-phenyl-thiophene in two aematic phases:
PCH and Phase IV [21] and to 4,4'dichlorobiphenyl in the nematic solvent 152 [21]. Using a
maximum entropy approach we have obtained from the experimental proton dipolar couplings
purcly orientational order parameters for the two rings as well as an approximate iniernal
distribution. In figure 12 we show the results vbtained for the purely internal distribution P(4)
giving the probability of finding one of the two rings of 4,4'dichlorobiphenyl with respect to the
other.
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Figure 12. The probability distribution for finding an inter-ring angle ¢ for 4,4" dichlorobipheny! dissolved
in nematic 152 [53).

I am grateful to Min P.I. and CN.R. (Rome) for supporl to this work amd to A. Arcioni,
R. Berardi, F. Spinozzi and R. Tarroni for reading the manuscript.
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