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ABSTRACT. We inlrOduee the description of translational, orientational and internal order parameters in
liquid crystals. We give a systcmatic approach 10 the identification of the relevant paramctcrs as cxpansion
coefficients of the singlct distribution function in a suitable basis seL The construction of approximate
distnOutions from a limited set of order paramcters using the maximum cnuopy principle is discussed. We
lreal in detail order parameters and distribution functions for three cases: rigid molccules with cylindrical
or biaxial symmeuy and non-rigid molecules with onc intcrnal rotor dissolved in various mcsophases.

I. Introduction

The description of order in liquid crystals [1-3] started many years ago with a reasonably easy and
weU-defmed question. How do we define the orienmbonai order in a system of cylindrically
symmetric, elongated objects that form a mesopbase with overall cylindrical symmetry? An answer
was provided half a century ago by Tsvetkov [4], i.e.,

S=«3cos'P-I)/2>, (I)

where p is the angle betwecn the molecular and the mesophase symmetry axes and the angular
brackets indicate a slatistical average. This order parameter has the nice feature of being zero
when the molecular axes are randomly distnbUled with respect to the laboratory axes, i.e., when
the mesophase is isotropic. It also becomes onc when the molecular axes are completely aligned
with respect to a laboratory direction (the director). It is rather curious that fifty years later the
situation looks much more complicated and the task of descnbing ordering in liquid crystals is
much more difficull On the one hand the number and importance of different liquid crystal types
has increased enormously. There are many imJXlrlant smectic phases [3], discotic [5,6] and
pyramidic [7,8] phases let alone lyotropics [9) and polymer liquid crystals [10]. Moreover the
same liquid crystals, i.e., nematics can be produced in many more different ways, with
nematogenic molecules that are not simple rods or discs [11]. Thus on the one hand it would be
tempting to consider a description of ordering in terms of the arrangement of very imple building
blocks (see the schemes in [11] as an example) with ellipsoids, discs, wiggly lines and to treat
many systems at this semi-qualitative level.

On the other hand there is an increasing number of demiled studies on solute molecules
dissolved in simple liquid crystals, nematics, say and on simple mesogenic molecules themselves
where a demiled knowledge of molecular order, including biaxiality, flexibility etc. is required
[12,13]. The other extreme would be that of having a complete, systematic classification and w;ing
it consistently. However, this description would be very complicated and cumbersome and
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2. General Approacb

basically useless, except for a very few systems. Indeed that kind of detail is nol accessible to
most experimental techniques.

To reconcile the two needs, we shaD try to give a systematic, albeit rather formal procedure for
introducing order parameters [14-16]. However, in the next sections we shaD also try to give very
detailed examples for simple but important cases, like that of purely orientational order. These
sections wiD be kept reasonably self~ntained, so the next formal section can be skipped by the
reader interested only in those aspects.

- Jdr an d<P A(r,!l,<I» p(r,!l,<I»,

where we use the angular brackets to indicate the statistical average. Here the volume elements
dr, an are respectively dxdydz and dnsin fJdfJdy. The conformational variables will, of course,
have to be detailed explicitly, for the one rotor case d<P = d;. The integrals are extended to the
sample volume and to the appropriate angular volumes. The normalisation of the distribution
p(r,!l,<I», is

(3)

(5)

(6)

(7)

(8)

(9)

Jdr an d<P p(r,!l,<I» • I.

6(<1> - <1>') = E k~' .,(<1» .;«1>').,

6(r - r') = (2lt)" Jdk exp(jk.(r - r)},

L L

6(G - G') • E E E {(2L + 1)/8lt'}D;.(G) D~:(G').
L.o .-L .-L

and the expansion of the angular delta function in generalised spherical harmonics or Wigner
rotation matrices D;.(G) [17,14)

p(r,!l,<I» • < S( r - r') 6(G - G') S(<I> - <1>') >, (4)

where 6(a - b) is a Dirac delta function and the integration implied in the ensemble average <..>
is over the primed variables. The Dirac function acts as a counting device, since it is different
from zero only when the primed variable equals the desired value. We could visualise a realisation
of this in terms of an idealised experiment or a computer simulation where we have aD the
positions, orientations, etc. for every particle. The distribution function is obtained by counting
aD of the particles that have the position-<>rientation·internal variable equal to the desired value
in the given configuratinn and then averaging over the equilibrium configurations. Generalisation
to distributions for n variables can he similarly given, yielding pair and in general multiplet
distributions [14). The singlet distribution can he rewritten in a convenient way using the Fourier
integral representation of the positional delta function (22)

The singlet distribution P contains therefore aD of the microseopic information necessary to
calculate one particle properties. In turn the structure and ordering of the system will be reflected
by P

For example, for a molecule with M independent internal rotational degrees of freedom, each
descrihed by an angle of rotation ;, about a certain bond

The functions D ;.(G), with L,m,n integers and L ;<, 0, -L S m S L, ·L S n S L, are of particular
importance in the description of ordering. Their properties are briefly summarised in [14]. We also
assume that there exists a suitable orthogonal basis set .,(<1» for the internal variables as well,
so that we can write one more representation of the delta function [22)

where k, is a normalisation constant. Thus

.,
S(<I> - <1>') • n 6(;, - ;,'),

'"
SO that for each degree of freedom an expression like

(2)< A> = < A(r,!l,<I» >,

As a starting point we consider a system of N molecules in a certain state of aggregation. For a
real system the microseopic description we are looking for is a statistical one and the state of the
system is represented by the information necessary to calculate all of the average properties of
interest. We assume the molecules to be classical particles with position specified by a vector r
locating a molecule fixed point with respect to the chosen laboratory frame. If the molecule is
rigid we can also speciJY its orientation G. In this case the orientation of the molecule is given
in terms of up to three Euler angles nfJy (17) or four quatemions linked by a normalisation
relation [18,19). This sel of quantities defmes the origin and the orientation ofacoordinate frame
fIXed on the molecule (the molecular frame). In the special case of cylindrical symmetry only two
angles are necessary to specifY the molecular orientation. Notice, bowever, that real molecules are
often neither cylindricaUy symmetric nor rigid, for they can have for example, flexible chains or
rings that can rotate with respect to eacb other. We shaD have, therefore, to expect that, beyond
a certain level of sophistication, features such as deviation from cylindrical symmetry and
flCXIbility will have to be taken into account (20). If we assume that a molecule is formed of a
coDection of connected rigid rotors, we can speciJY its state by giving the position, r, and
orientation, !l, of one rigid fragment and another set of variables, <I> specifYing the orientation of
the other fragments with respect to the first (16). We shaD discuss in some detail the case of
molecules with one internal rotor where <I> = ,; specifies the conformational state [16,21). For our
purposes, however, the complete static information about the system is represented by its
configuration i.e., by the set of positions r. orientations Cl. and conformational variables <I> of aD
the particles.

The enormous number of positional and orientational coordinates specifYing the various
configurations is fortunately urmecessary if we are only interested in calculating average
properties. Suppose, for example, that the probability for a molecule to have a certain position (r
+ dr), orientation (G + an), and internal state (<I> + d<P) i.e., p(r.n,<I» is known. In this case the
average of any property A(r.n,<I» relating to a single molecule can be calculated as
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Se; - ;') = L k••M) .;(n
•

(lOa) (15)

with integer n holds, since for the one rotor case the basis set is just the onc dimensional Fourier
sel (exp(-in;)} and le,. = 2rr. Before becoming involved in details of the distribution functions it
is worth seeing if we can make some geneml statements about them. Let us consider as a fIrst
example a uniform system Le., a system that does not change under translation. For a uniform
fluid the singlet probability will be independent of the position of the molecules with respect to
the Iabolatory frame

= (21tt' L exp{-in(; - f)} (lOb) Clearly a complete set of order parameters has an information content equivalent to that of the
distribution function. A subset of these coefficients will contain some necessarily partial, but as
we shall see possibly very significant information on the same distribution. When the positions
are on avelage distributed on some regular lattice, defmed by the primitive vectors a"."a) the
integml over k in equation (13) reduces to a sum [23] and we can write

P(r,n,<I» = J dk L [(2£; I)] (exp( -ik.r') D::(n'). ~(G)'»)exP(ik.r) D;.(n) ••(<1», (l3a)
L./II./o •.l 641t *1.

"Jdk L P,...~.(k)exp(ik.r)D;.(O) ••(G». (l3b).........
Another equivalent way ofseeing this is to say that the distribution Per.n,G» is a function of the
positional, orientational and internal variables. As any other well-behaved function we should be
able to expand it in a basis set over these variables. Now the plane waves exp(ik'.r), the Wigoer
rotation matrices D;.(n) and the functions ljr.(<1» constitute suitable orthogonal basis sets for
positions, orientations and for the internal variables. The distribution can be written in genelal as
the expansion equation (13) and the coefficients obtained using the orthogonality of the basis set.
Thus

For an ordinary fluid p(n,G» cannot depend on n and for rigid molecules it must be a constant.
For a system like this Le., a !are gas, if we limit owselves to one particle properties, all that can
change at the liquid-gas transition is just the density. We can take as the order parameter the
difference between the density of the gas and that of the liquid. This could be the case of an
ordinary isotropic liquid or of a nematic, but not of a smectic or a crystal, where molecular
positions are regularly arlanged. The situation is, however, quite different in an anisotropic system,
as we shall see in detail in the next section. Substitution of the various delta function
representations gives

(17)

(18)

(19)

(21)

(20)

(220)per) • J tind<l> P(r,Q,G» / J drtind<l> p(r.n,G»

al'bl = 011'

with i.j, k an even permutation of I, 2, 3

with k a point in the reciprocal lattice. More explicitly

k = 2rr [h, b, + h, b, + h) bJ,

where h, are integers and the reciprocal lattice vectors bi are

b , = (aJ x a.) lv"

is the volume of the primilive cell in the real lattice. In the special case of an orthorombic lattice,
where 8 1 .l 8:2 .1. 8) can be taken along x, y, z we have

Systems of spherical particles can have purely positional order when they =ge somehow on
a lattice. In complex liquid crystal systems the other degrees of freedom will normally be present.
However, if we wish to concentrate on regularities in the positions, we can defme purely
translational distributions as

where d, are the lattice spacings in the three directions and n, are integer. We shall study this
important special case later on.

Equation (21) is useful to see how order parameters can be introduced in lather genelal
situations. However, it is too complicated to carry around in the present form and in the remainder
of this chapter we shall treat special cases, trying to understand their significance in detail. We
shall consider first pure positionaJ order, the orientational order in rigid molecules, then positionaJ­
orientational and internal order.

3. Purely PosilionaJ Order

(11)

(12)

(14)

set of

distribution

J tin d<I> p(n,G» = 1.

P(r,n,G» = (p INj p(n,G» ,

where p " NW is the number density and p(O,G» is an orientationaJ-<:onformational
normalised to unity i.e.,

_[ (2£ + I)]Jdrtind<l> Per.n,G» exp( -ik.r) D::(n) • ~(G»
P,... .(k)-__ .

•. 64rr' k. Jdrtind<l> P(r,n,G»

We shall call the positionaJ-orientational-<:onformational order parameters the infmite
avelages of the basis functions
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• ~(exp(-jk.r'))exp(ik.r)

•
(22b) is an even one, like that for a smeetic A it will suffice to consider a basis of cosines, since these

and not the sines have the correct symmetry. We have therefore

are the purely translational order parameters. The case of full three dimensional order is more
pertinent to molecular crystals, but liquid crystals present many systems with order in one or two
dimensions. Let us now see a simple example in detail.

(25)where

(exp( -ik.r')) (23)

P(z) = ~ P, cos(2nn,zld).,
The P. coefficient can be easily obtained by multiplying both sides of this equation by
cos(2rrmz1d) and integrating to give

J' dzP(z)cos(2nmzld) =~P J'dzCOS(2nnzld)coS(2nmzld), (263)
o , ~ 0 a

3.1. ONE DIMENSIONAL POsmONAL ORDER

Figure I. A system with incomplete positional ordering in one dimension; on the left we have the
probability distribution p(z).

(24)). Since smeetics exist quite happily anyway, the contradiction has been resolved with the
hypothesis, apparently confltllled experimentally by high resolution X-ray studies, that the order
deereases very slowly with the layer separation [25-27]. For any practical purpose, we can
certainly consider smeetic A phases as periodic structures. This implies that we can limit ourselves
to considering p(z) with 0 S; z S; d. Moreover we can expand P(z), like any other periodic function;
in a Fourier series, [17] i.e., we write it as a combination of sines and cosines. If the distribution

(29)

(27)

(283)

(303)

(30b)

(26b)

(28b)

t. = < cos(2nmzld) >

represent our set ofpositional order parameters [14,27,28]. We can; in turn, write P(z) as

P(z) • d-' + (2Id) < cos(2nzld) > cos(2nzld) + ...

= d-' + (Ud) ~ "cos(2nn,zld).,

and

P = (Ud) J' dz P(z) cos(2nmzld)
• •

3.2. lWO OIMENSIONAL POSmONAL ORDER

= P. d(5.. 5.,. + 5••)12,

where we have used the orthogonality of the cosine functions. We fmd, therefore,

p =d-'J'dzP(z)• •

The purely positionaJ order parameters can be obtained from X-ray diffraction as described in
[27,28].

with n" n, > O.

" •• If,

This implies that the P. coefficients are positional averages of the Fourier factors, by using the
defutition of p(z). The averages

= (Ud) < cos(2nmzld) > ; m > O.

Two dimensional positional order can be found, i.e., in certain discotic phases, where we have
columns of mesogenic molecules which have ideally no positional order inside the column; while
the columns themselves are arranged on a hexagonal (0..) or rectangular lattice (0,,) [6]. For a
0", rectangular discotic phase we should have, choosing the z axis along the columns axis that the
k vector lies in the (xy) plane and

P(x,y) = (d,d)-' + (41d, d,)~ (cos(2n n,xld,) cos(2n n,yld)) cos(2n n,x/d,) cos(2n n,yld,) (31)

I'{z) (\

---0-0-D-\j--

---------. -----0\)-00
---OOBB-'

-------- -GO-DO-'

z

We consider one dimensional translational order such as that presented by the distribution of
moleeular positions along the director (z say) in a smeetic A or a smeetic C, so that per) reduces
to P(z). When this ordering is perfect the positional distribution function p(z) consists of a series
ofOirac deltas (the so-caUed Oirac's comb) separated by the lattice spacing d. !fthe order is not
perfect the peaks of the distribution will become broader (see figure I). In the limit of no
positional order (i.e., a nematic) the distribution beeomes flat. For a smectic A-like system such
as that in figure 1 p(z) remains a periodic function of position z,

p(z) = P(z + d). (24)

Incidentally we note that strictly true order in one dimension should not exist (see, for example,
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4. Orientational Order J: dfJsinfJP,(cosfJ)P.(cosfJ) = {2/(U + I)}S, •.

19

(37)

When the molecule is rigid and the system uniform, so that only orientational degrees of freedom
are relevant, the general distribution p(r,Q,<I» reduces to P(O). More generally wr can defme a
purely orientational distribution

Clearly these functions correspond to a special subset of the Wigner rotation matrices used in the
general expansion in equation (6). Tbe explicit forms of the fom few Legendre polynomials are

P,(cos fJ) ~ I, (380)

4.1. CYUNDRlCAL MOLECULES IN UNlAXIAL PHASES

For the purely orientational case equation (13) reduces to an expansion in Wigner rotation matrices
[14,29]

This equation can be simplified by using the symmetries of the mesopbase and of the molecule,
if any. We have given elsewbere some general prescriptions for doing this [14] using group
theory. 1be procedure consists essentially in projecting onto the totally symmetric representation
of the point group of the molecule and of the mesophase [30-33]. The action of the various
symmetry operations has been considered as a combination of rotations and inversion, following
Blum and Torruella [31]. Essentially the same method has been used by Pick and ¥vinec for the
distributions in molecular crystals [33]. Here we wish to discuss in detail a few simple examples,
that are the most important in practical situations.

As we see from these fom few examples. Legendre polynomials are even functions of cos fJ if
their rank L is even and odd functions if L is odd [34]. i.e.,

(38b)

(38<:)

(38d)

(38e)

(40)

(39)

P(fJ). (see

P(fJ) = LP, P,(cos fJ) ; L even.,..

P,(cos fJ) - cos fJ.

P,(cos fJ) = (3 coS' fJ - 1)/2,

P,(cos fJ) = (5 cos' fJ - 3 COS fJ)/2,

Picos fJ) = (35 cos' fJ - 30 coS' fJ + 3)/8.

P,(cos fJ) = (-y P,(-cos fJ)·

Thus we only need to retain even L terms when expanding the even distribution
equation (36». in terms of P,(cos fJ) and we can write

(32)

(33)P(O) = L PLo. DL(O).
.~.

P(O) = Jdrd<l> p(r,Q,<I» / Jdrc4ld<l> p(r,Q,<I».

We shall treat the case of uniaxial mesophases (i.e., nematics, smectic A or columnar with
transverse positional disorder). We shall assume the axis oflhis cylindrical symmetry, the director,
to be along the Z laboratory axis. Thus rotating the sample about Z no observable property will
cbange. Thus the probability for a molecule to have orientation (afJy) should be the same
whatever the angle Cl, since the angle a describes a rotation around the laboratory Z axis. Here we
also make the assumption, very often made in the literature, that the molecules possess uniaxiaJ
symmetry. In this case the distribution should not depend on the angle y which is defmed as a
rotation around the molecular z axis, SO that

The Jth coefficient in the expansion can be easily obtained using the orthogonality of the basis
sel. Multiplying both sides of equation (40) by Picos fJ) and integrating over sin fJdfJ gives

J' dfJ sin fJ P(fJ) PAcos fJ) = t P, J' dfJ sin fJ P,(cos fJ) PAcos fJ). (41)
o L~ 0

p(afJy) • P(fJ), (34)

we fmd the coefficients in equation (40) as

PI = {(2J + 1)/2} < PI >, (42)

where

< PI > = J: dfJ sin fJ PI(cos fJ) P(fJ). (43)

It is apparent that the knowledge of the (infinite) set of < PI > completely defmes the distribution
and that the Legendre polynomials averages < PI > represent our set of orientational order
parameters. We can write

P(fJ) = (1/2) + (512) < P, > P,(cos fJ) + (912) < p. > p.(cos fJ) + ... . (44)

1be fom non-trivial term contains the second rank order parameter

(35)

with the normalisation condition

J: dfJ sin fJ P(fJ) = J.

If the molecules are unable to distinguish head from tail we sbould have

P(fJ) = p(n - fJ). (36)

For nematics this correspoods to the experimental flDding that on turning the aligned sample
upside down no observable property changes. The situation may be different, e.g., in monolayers,
wbere an asymmetry exists. 1be fom thing we can do to identiJY a set of parameters that we can
use in lieu of P(fJ) is to expand the distribution in a basis set of functions orthogonal when
integrated over sin fJdfJ. Such a set is that of the Legendre polynomials [34] P,(cos fJ), for which
we have
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< P, > = < (3 cos' fJ - 1)/2 >. (45)

which corresponds exactly to the S order parameter introduced by Tsvetkov [4] (see equation (I».
It is worth stressing that equation (40) is exact as an infinite expansion, but that in practice it does
not give a very good approximation to P(JJ) wben we truncate after the first few tenns. For
imtance if we have < P, > = 0.6 the P(fJ). as given by the ortbogonal expansion truncated at the
second rank level. is shown in figure 2 as the dashed line. We see that P(fJ) constructed in this
way can even become negative. which is certainly not physical when we recall that P(fJ) is a
probability. Notice that any property depending only on < P, > is calculated correctly using this
P(fJ). However. < p. > and the higher order parameters calculated with the second rank
approximation are zero, beca= of the ortbogonality of the Legendre polynomials. Thus the
orthogonal approximation is exact for tenns that we have included but very bad ifwe want higher
tenns.

PI§) '.a ""''''''''''''''T"T~~~~~''''''~
••5

•••
'.5
I.'
1.5

,.a
'.5
a.a ,-_ ...

-a.5 LL..wl...L..w.........w.. ...J............wu..J
o !Cl 10 10 120 150 110

,,'
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(47)

where the coeflicients aL are obtained by imposing the cons1Iaint that the < PL >. L = 0, ...• L'
calculated from P(fJ) have the known values. In particular we have the normalisation condition
< Po > ~ 1. Tbe infollIl&lion theory approach is in a way an a posteriori one. It allows the
construcIJon of an approximate full distribution from the available information but on the other
band it can make no prediction as to what the distribution will be a~ say, a different temperature.
In addition, the approach does not say anything as to the molecular origin of the distribution itself.
It is a. way of translating the experimental infnrmation into the most probable distribution
compallble w,th the data themselves. As more and more order parameters or, in general.
observables become available the estimate of P(fJ) can be refmod. Tbe methnd does not rely on
a pnon assumptions and as the number of tenns inc..JC8SCS the sequence of maximum entropy
approxunatlons converges 10 the true one [37]. It is also important to stress that at any level of
approximati~n the distribution obtained is positive and of exponential character. It may be worth
discussmg m some detail the differences between the ortbogonal and the maximum entropy
approximations [29].

4.3. EXAMPLES

We now consider briefly whal inferences can be made about the molecular organisation starting
from a knowledge of a small number of order paramelers and in particular of < P, >, < p. >.

4.3.1. Knowing < P, > only. To start with we suppose that only the second rank order parameter.
< P, >. has been determmed. Tbe maximum entropy distribution associated with this < P, > is

Figure 2. The orienlalional distribution P(fJ) corresponding to <P,>=O.6 as obtained from the orthogonaI
expansion truncated to second rank (dashed line) and from the maximum entropy procedure (continuous
line).

with the normalisation constant

P(fJ) = Z;' exp[o, P,(cos P)]. (48)

(46)

(49)4.2. MAXIMUM ENTROPY

Tbe problem of fmding the best, in the sense of least biased approltimation to the whole P(fJ) or
in general P(Q) starting from a knowledge of a set of order parameters < PL >. say up to rank L',
can be approached using infollIl&lion theory [35-37]. In this approach the most probable
distribution is defmed as that maximising the entropy associated with the usual thermodynamic­
like formula

~(a.l) - - JtKlp(o,{aL I)Inp(o,{a,l).

with respect to the set (aLl. It has been shown using the standard lagrangian multiplier technique
that the best distribution in this respect has the form [35-40]

Z, • J: dfJ sin fJ exp{o, P,(cos fJ)].

and with a, determined by the condition

< P, > = Z;' J: dfJ sin PP,(cos P) exp{a, P,(cos fJ)J. (50)

This equation can be solved for a, in tenns of< P, >. In figure 3 we show the resulting curve for
posItive < P, > as the full line. We see that for positive < P, > the distrihution is peaked at
fJ = 0, so that the majority of molecules will be parallel to the director. This is normally the case
when we dissolve an elongated molecule in a nematic.

A simple analytic approximation for 0, in tenns of < P, > is obtained by expanding a, in a
power senes m < P, > [41]

0, = 5 < P, > - (2517) < P, >' + (425/49) < P, >' - (51875/3773) < P, >' + .... (51)

Tbe. series is, of~, divergent at < P, > = I but it can still be useful for order paramelers
realistICally found m nematics. Tbe very simple approximation
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o,=5<P,>

is useful to obtain a good idea of a, and thus of the distribution at least up to < P, > = 0.6.

0.' ,.-,-r-r-..-r-r-..-.--,-,.,,,

(52) difficult to show, using Schwarz's inequality (34) that

< cos' P >' ,; < cos' p > ,; < cos' p >. (54)

The explicit fonn of < P, > and < p. > in equation (38), together with these inequalities yields
(42)

(35/18) < P, >' - (519) < P, > - (7/18) ,; < P, > ,; (5/12) < P, > + (7/12). (55)

These two inequalities defme the region of space where possible values of < P, > and < P, >
consistent with their respective trigonometric fonn should lie. It goes without saying that it makes
sense to check that experimental values do fall within this area. Tbe coeffICients a" a, can be
obtained by solving the non-linear system

0,'

0.'

0.1

0.0 u"""=:L.Ll....J...........L..I....J...........L..Ic...J
0.0 0.1 0.2 a.s D.. 0.5 D.I 0.7

<PI>

I .

< P, > = z;; I: dP sin PP,(cos P) exp(a, P,(cos P) + a. p.(cos P)]

< p. > = z;; I: dP sin Pp.(cos P) expfa, P,(cos fJ) + a. p.(cos fJ)]

(560)

(56b)

Figwe 3. The fourth rank order parameter <p.> versus <P,> as obtained from the purely second rank
distribution equation (48) (continuoos line). We also show the approximate analytic expression
<P,> = 5fI <P,>' (dashed line).

with

z" = I: dP sin Pexp[o, P,(cos P) + a. p.(cos P)]. (57)

Figwe 4. The ooellicients a, and a, in the distribution P(fJ)« exp[a, P,(cos fJ)+a.P,(cos fJ)1 shown as a
function of <P,> and <p.> (43).

The coefficients obtained (43) are shown in figure 4. Notice that, although we expect < P, >
gneater than < p. > as it was the case in the P,(cos P) distribution (see figure 3), a range of
solutions exists also for < p. > gneater than < P, >. Indeed an interesting case is that of
<p.> > <P,>, with the values fuJling on a curve like the continuous line in figure 5. This unusual
behaviour has been found to be consistent with fluorescence depolarisation data of diphenyl­
hexatriene in DPPC and DMPC membranes vesicles (44). In turn the behaviour agrees with that

1
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-15

a.

1

20

-15

a,

Having detennined a, we can immediately plot the distribution P(P). For example, if we assume
< P, > = 0.6, as in the previous section, we obtain the approximate maximum entropy distribution
plotted as the continuous line in figure 2. .

We nolice that a, becomes negative as < P, > changes sign and that the corresponding
distribution becomes peaked at p= t. Pbysically this will normally happen when we study a disc­
like molecule dissolved in a calamitic nematic, since in this case the molecular z axis (the disc
axis) is preferentially aligned perpendicular to the director.

4.3.2. KfWwing < P, > and < P, >. We now turn to the case where both < P, > and < P, > have
been detennined The fust thing we might try is to see if the distribution in equation (48) ohtained
using just the information on < P, > is consistent with the observed < p. >. Thus we would use
the distribution generated by the a, obtained from < P, > and calculate the fourth rank order
parameter < P, > by integration. The curve obtained is shown in figure 3 as the continuous line.
A simple approximate analytic fonn for this relation can be obtained by expanding < P, > in
powers of a, and substituting into equation (51). This gives

< p. > • (5rT) < P, >' - (2001539) < P, >' + (35650149049) < P, >' + ... , (53a)

" (5rT) < P, >'. (53b)

The series contains large terms of alternating sign and is poorly convergent WlIess terms are
properly grouped together. The very simplest approximation namely equation (53b)'[4I) found by
retaining jwl the fust tenn, is actually a good approximation up to < P, > " 0.6 as we see from
the dashed line in figure 3. When < P, > does 0.01 fall on the curve in figure 3 we can construct
a distribution like equation (47) with L =0, 2, 4. To do this we have to find a, and a. from our
given < P, > and < p. >. The fust thing to observe is that the domain of the functions a,« P, >,
< p. », a.« P, >, < p. » consists of the set of allowed values of < P, > and < p. >. It is not
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Figure 6. The angular variation of the distriootion p(fJ) ~ exp [a,P,(cos P)] with a,=2.

120 ISO 180".90

(58)

(59)

P(P) - Z,-l exp[a, P,(cos P)],

Z, = J: dpsinpexp[a,P,(cosp)].

•••

... ,.,..,....,-r-,....,...,.."T"'rT",...,..............,....,.,....,
<P,>

•••

predicted by a model with pun: P,(cos P) effective potential [45], which gives a distribution

••• 4.4. NON-CYLlNDRICAL MOLECULES IN UNIAXIAL PHASES (29J

In the last section we have gone into some detail in treating cylindrically symmetric objects. This
wIll now allow us to skip some explicit steps, since the logic here is the same, even though the
algebra is somewhat more complicated. To start with we notice that when the rigid molecule of
interest, which we still assume to be dissolved in a uniaxjaJ phase, cannot be treated as a rod-like
or a disc-like particle, we need an extra angle in defming its orientation. Thus if p is the angle
between the z axis of the particle and the director, the extra angle, y is an angle of rotation arouod
the molecular z direction [17]. The probability of flDding the molecule at a specific orientalion,
P(py), can be expanded like any other function of the two Euler angles py, in a complete basis
set of spherical harmonics. Thus we flOd

0.' I.D
<PJ>

D••D••D.'
••• L..L..........l..J.............J...u...&...l...........LJ...J........w

•••

..,

Figure 5. The dependence of the foorth rank order parameter <P,> on the second rank <P,> for a purely
foorth rank distriootion equation (58) (continuoos line). We also show the analytical approximation in
equation (61) as the dashed line [29].

where we have chosen the Wigner matrix notation D~(Py) [17]. Orthogonality of the basis set
immediately pemtits determination of the coefficients PP" which gives

and the number of independent quantities is correspondingly reduced. At second rank leve~ L = 2,
there are at most five independent order parameters < D~ >. The five order parameters could
also be chosen as the independent components of the cartesian ordering matrix S first introduced

The set of averaged Wigner orientation matrices < D~ > allows a complete characterisation of
P(Py)· The generally complex quantities < D~ > are called orientational order parameters (see,
f~r exampl~, [15,16]). The complex conjugate ofa Wigner function isD~:(n) = (-)"~ D :'~(n).
Smce the distribution P(Py) is real, then

We wish to obtain also for this limiting case a simple approximation to the < P, > versus < P, >
curve. We start by Taylor expanding the exp",..ions for < P, > and < P, >, i.e.,

< P, > =Z;' J: dP sin p P,(cos P) exp[a, P, (cos P»), L =2, 4, (60)

with ...spect to a,; reversion of the series for < P, > gives a, in terms of < P, >. Substituting in
the series expansion for < P, > we obtain < P, > in terms of < P, > and by further reversion

< P > = {i7 < P >'. _ 69 < P > + 7794479 < P >" + (61)
, f90' 260' 1oo776O.fi70' ... .

This simple power series in < P, >" gives a good representation of the curve for < P, > up to 0.9.
In figun: 5 we show the analytical approximation to the < P, > versus < P, > curve from the
buncation in equation (61) (dashed line) and the curve obtained by direct numerical integration
(continuous line). Using equation (61) it is quite easy to test if a set of < P, >, < P, > values has
a pun: P,(cos P) behaviour. An example of the pun: P,(cos P) distribution is plotted in figun: 6.
Notice that the probability shows a maximum not only for molecules parallel to the director, but
also a smaller one for molecules perpendicular to it

P(py) • E P4 • D~(Py),
4.

,
P(Py) = (4ltt' E E (2£ + I) < D~' > D~(Py).

LooO .-L

< D~' > • (-)" < D~ >,

(62)

(63)

(64)
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(691)

(70)

(690)

(69<1)

"

(6ge)

,.

0••

0.
0

,
"" 02

,

D',.,(Py) = {*sin' pexp(.i2y),

D:.(Py) - p.(cos p),

D:',(Py) = .fW{14 cos' l - 14 cos' l + 3 cos' P} sin' l exp( .i2y)
2 2 2 2 '

D:'.(Py) • {iOcos' l sin·l exp(.i4y).
2 2

..

0.&

0·0

p (,,)

4:5.L Maximum Emropy Distributions. Ifa sel of order parameters < D;. > is known, the best
distnbutlon compahble With them is, according to information theory (36)

P(py) = exp[E aL. D.'.(Py)],
L,

where the coeffICients al.o are obtained by solving the non-linear system ofconsistency constraints

< D;. > = J: dP sin Pr dy D.'.(Py) exp[E at. D;.(Py)], (71)..
and a" from Ihe normalisation constraint < D:. > : L

a

Since the principal frame of the ordering matrix is detennined by symmetry, at second rank level
there1are two relevant o~er parameters, < D;o >. Re < D;, > or, e.g., Sa and SlDI • SW" While
< D GO > measures the alignment of the z molecular axis with respect to the director as we have
seen forcylindrical molecules, Re < D;, > is a biaxialily parameler. It provides the difference
m ordermg of the x and y axes for the molecule in that liquid crystal solvent and at the given
thennodynamlC conditions. A perhaps more immediate interpretation can be obtained by
constructmg approXImate molecular distnbutions consistent with a given set of order parameters.

~ .

..f3iilm <D;, >

< sin' pcosysiny > < sin pcospcos y >]
< (312)sin'psin'y-~ > < sinpcospsiny > ; (65)

< sin Pcos Psin y > < (312) cos' P - ~ >
Results can be easily converted from the Saupe to the

[6/l Re<D:1 > -~<D:o>

-..f3ii Im < D;, >

-..f3ii Re<D;, >

s=

by Saupe (46)

[

< (312) sin' Pcos' y - ~ >

S = < sin' pcosysiny >

< sin pcos pcos y >
the matrix is traceless and symmetric.
Wigner rotation matrix fonn (14)

We call the ordering matrix frame the principal axis system of S, sometimes obvious by
symmetry, wbere S is diagonal.

It should be stressed that other equivalent fonnulations can be given to the problem of
describing orientalional order. A set of second rank ordering constants used particularly in optical
spectroscopy (47) is the set of orientation factors

K.. = < (Z. a) (Z. b) >, a, b : X, y, z, (67)

where a, b, are unit vectors that can be parallel to the X, y or z molecular axes and Z is along the
director. For ins1ance K.. = < cos' P>. The K and S are simply related by

S.. = (3K.. - S,.) 12. (68)

The cartesian fonnulation can be extended to higher ranks both for the S matrices (14) and
orientation factors (47) although it becomes progressively more complicated than the spherical one
as the rank increases. Whatever the formalism used the relevant order parameters for molecules
of a certain point group can be listed. A fairly general treatment of the allowed order parameters
for various molecular symmetries has been given elsewhere [14]. In practice, in a great number
of practical cases, the assumption is made that the molecules of imerest are biaxial particles. This
case, which includes many molecules of interest in optical studies, i.e., pyrene etc. will now be
discussed in some detail.

First, we choose our molecular frame with axes along the three C, axes. Since we can turn our
biaxial particle upside down without changing anything we only need to retain in equation (63)
functions that are invariant for this transformation. Remembering [14,17) that the spherical
hannonics D;.(PY) are multiplied by (-t under the same operation, we see thal we only need to
expand in Wigner rotation matrices of even rank L. The flrst few are

D:.(Py) • I, (69a)

D;.(PY) = P,(cos P), (69b) Figure 7. An example of the orientational distribution P(py) for. biaxial molecule with <P,>;0.4 and
Re <D~ >=0.1(.) or -0. I(b) [29J.

For. biaxial solute where < D;, > and Re < D;, > are detennined, we have simply
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with a '" a", ~ '" a,Ja". The parameter ~ is a measure of the deviation from cylindrical
symmetry, since it is zero for the special case of uniaxial molecules. To iIlusttate the interplay
between order parameters and distributions, we show in figure 7 a few examples of distributions
corresponding to biaxial objects with < P, > = 0.4 and Re < D:, > = ±O.l.

In figure 8 we show a similar distribution for plate-like biaxial particles. In this case the particle
has a greater probability of having the z axis perpendicular to the director, with the plate plane
tending to be aligned parallel to the director. The sign of the order parameter Re < D:, > tells
US which of the two axes in the plane is most aligned. It is interesting to notice that biaxiality
effects are somewhat magnified for oblate molecules. If we remember that

We see that the performance of the simple equation (75) as the dashed lines in figure 9 is quite
reasonable throughout the range and vety good for < P, > up to 0.6 - 0.7.

expressing the deviation from cylindrical symmetry of the solute polarisability a. Curves of
Re < D;, > versus < D;o > or equivalently of Su - SY'f versus Sa at constant ~ are often used
when analysing experimental data [12]. In figure 9 we see such a family of curves. We shall now
try to find some approximations for the biaxial order parameters calculated from integration over
the distribution in equation (72). To do this we consider ~ fIXed and expand < P, > and
Re < D:, > in terms of a. Eliminating a between the last two equations and regrouping the terms
we fmd [29]

Re < D:, > = < P, > « P, > - I)' ({ + 5~';Z; 2~ < P, >

P(py)
exp a[P,(cos P) + ~ ReD:,(py)]

J: dP sin P J." dy exp a[p,(cos P) + ~ Re D:,(py)] '

Re < D:, > = 1(3/8) < sin' P cos 2y >,

(72)

(73)

I .
25~' - 130~) + 174~ }

+ 196 < P, >' + ....

(75)

we see that for a rod-like molecule as the alignment increases P approaches on average more
closely to zero, as will sin' P and ultimately Re < D:, > itself In contrast for an oblate-like
molecule, P in a similar situation approaches Tand sin' P approaches I, thus allowing the y
dependence to emerge.

1.0

< D· >00

0.80.6

0.02

Re < D:. >

O.Oq

0.06

"

o

b

..~
2

,

0.'

,.

"

o

a

0.'

1.

o.
o

Figure 8. An example of the orientational distribution P(fJy) for a biaxial molecule with <P,>=-0.2 and
Re <D~ > =0.1 (a) and -0.1 (b) [29J.

Notice that here we have no means of knowing if ~ is a molecular property or not. The
maximum entropy fonnalism just converts order parameters into distributions, without offering
a molecular interpretation to what is observed. However, equation (72) is formally identical to that
obtained with molecular field theoty, i.e., starting from a dispersion interaction [48]. In that case,
the parameters a, ~ do indeed have a molecular interpretation. For dispersion forces ~ = n,
where >. is a molecular constant

>. = 1(3(2) (n.. - 0..,,) /(2n.. - n.. - 0..,),
(74)

Figure 9. A plo! of the order parameter Re <D~ > versus <D~ > for the biaxial distribution in equation
(72) and for ~=0.2 (a), 0.4 (b), 0.6 (c) as calculated by numerical integration (continuous lines) and from
the approximate analytic expansion equa'ion (75) (dashed lines) [29].

4.5.2. An Example. In [49] we have determined, through deuterium NMR, the ordering matrix for
petylene dissolved in various nematic solvents. The results for the second rank order parameters
in four nematics at different temperatures are shown in figure 10. The molecular coordinate system
assumed has the z axis perpendicular to the petylene plane and the x axis in the direction of the
peri bond. We see that the behaviour in the various solvents is different, so that order parameters
are in general solute-solvent rather than just solute properties. While on the one hand this
represents a source of complication, it also offers an interesting handle towards probing specific
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(76)

(77)

(790)

(7ge)

(79b) •

(79d)

E • e45>e,

Axz =.: (A '.-' - A"),
2

A ; -i (AlJ -A'-'),
XY T

We consider an example of the experimental determination of second rank orientational order
paramelers. We shall choose the anisotropy in the optical absorption, i.e.• a linear dichroism
experiment [29). but the treatment is similar for other techniques. Typically an experiment consists
of perfonning measurements of anisotropy on a suitable lensor property. In the present example
the absorption of light by a solute relative to a certain electronic transition is determined by the
transition moment p [47]. If for simplicity we dcal with a single transition from a state with
wavefunction "I to a state 'l'J then the transition dipole moment is the matrix element between
these two states of the electric dipole operator t\t. i.e., I' " < t, I t\t I t, >. In general there will
be, of course, complications arising e.g., from overlapping transitions etc. with a well-dermed
orientation in the molecular frame. The probability of absorption of plane polarised light with a
polarisation direction e does not depend directly on p but rather is

p... • < (e.p)' >.

4.6. EXPERIMENTAL DETERMINATION. LINEAR DICHROISM

A=p®p. (7~

This equation is useful because it stresses that we are really looking at a second rank tensor, not
a vector. We could now measure the absorbance parallel and perpendicular to the director and try
to relate it to the order parameters. It is convenient to do this using spherical, rather than cartesian
tensors. In practice for second rank symmetric cartesian tensors this can be done explicitly

Axx ; __I_A" - _I_A'" + ':(Al.2 +A'~), (790)
.ff .f6 2

with a, b ; x, y, z and where we have introduced the polarisation tensor [51)

contammg all the experimental geometrical infonnation and the absorption transition tensor
containing the molecular information

ZLIJ 167 al <P,>;-0.424.

o'p

0.5

pcp y)

0.0 .~-'-7:-..!.-!::-'L-.L...i:::t::::§l....J
-0.5 -D.4 -0.3 -0.2 -0.1 0.0

S.
Figure 10. Plots of (s,..s,,) against S. for pel)'!ene in the four liquid crystals: E63 (0).152 (0). ZLlII67
(hourglass). ZL12585 (0). The solid lines are theoretical predictions for ,he values of the molecular
biaxiality parameter (ef. equation (74) ).;.().05 (a). -O.ID (b)• .().15 (c) [49J.

0.2

0.3

0.1

interactions in the fluid phase [50]. The construction of distributions corresponding to these
dilTerent situations can help in making sense of what the most probable orientation is. As an
example we show in figure I I the probability distributions for perylene in ZLI-1167 at the lowest
temperature employed

1.

Figure 11. The probability distribution P(fJy) for perylene in
S. -S" -[6 RIo <D~ > -0.340.
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with LAB and MOL subscripts referring to the laboratory and rolated frame. In particular the lerm
A" = -a 1.[3, where a is the lrnce of A, is a scalar. The averaged measurable irreducible
components will be

4.7. ORIENTATIONAL ORDER IN BIAXJAL PHASES

classes of molecules in dissolved liquid crystals.
The order parameters cbange with temperature and jump to zero at the nematic-isotropic

transition. This phase transition is a weak first order one and accordingly the order ~eters
present a relatively smaU jump. Typical values for < P, > at the nemattc to ISOtroPIC transition are
in the range 0.3 - 0.4. Order parameters for different liquid crystals, when plotted agamst .the
reduced temperature TIT"" with T", the nematic-isotropic transition temperature follow fairly
closely a universal curve [2]. It is quite clear thal in view of this and of the pronounced
temperature dependence it is advisable to compare order parameters for different molecules al the
same reduced temperature.

(80)

(79/)

A~:8 - L D;:(apy)A~~ .. ,,

Azz = - ~A" + J~ A",

where the so-called irreducible components A"" of rank L and component m have, under rolation,
the simple transformation properties

Quite similarly the measured pelpCndicular component will be

<A. > =a - J(1I6) E < D:: >A;."'w (83)

For a uniaxial phase invariance for rotation around Z requires S.... The measured absorption
parallel to the director can be written as

< AI > =< AZl >LABJ

We sbould be aware that the order parameter < P, > measured for a molecule dissolved in a liquid
crystal is clearly not the same as that of the pure liquid crystal, since solute-solvent terms in the
anisotropic potentil!l acting on the molecule are different from the solvent-solvent ones. This also
means that except for special cases where the solute is very similar to the solvent, probe
techniques give information on the behaviour of solutes in anisotropic phases and thus only
indirectly report on the phase itself. While this has been perceived as a limitation of these class
of measurements, there is instead a lot of scope for learning about the behaviour of interesting

(86)P(apy) = E PLo' D;,(apy) ,
Lo,

and the order parameters will be averages of the Wigner rotation matrices < D;, >. Weshall
only consider the case of rigid biaxial molecules in biaxial phases, where applicalton of the s'Fple
symme?{ arguments mentioned previously shows that we can have. order paramete~ ~ D oo >.
Re < D" >, Re < Di, >, Re < Di, + D~, > in the principalllXlS system of the hqwd crystal
and of the molecule.

Experimentally we can consider once more equation (80) and the averages in equation (81). In
an ideal experiment we can determine all of the components < A.. >, WIth ab = X, Y, Z, ~d then
diagonalise the tensor A to find the liquid crystal principal axis system.. In prncttce the
measurements are more easily performed on an aligned system, where we unagme from the start
to be in the principal system. In this case the surviving measurable components of a second rank
tensor wnuld be

< Axx > = - _I_A" - « D:" > A::'OL + 2Re < D;; > A',;OL) 1{6
.[3 (87)

The purely orientational distribution will depend, in general, on the three Euler angles. Thus

< A > = - _I_A" - « D:" > A;;'OL + 2Re < D;; > A',;oL)I{6
yy .[3 ~

- (Re < D:: > A~OL + Re < D;; + D:~ > A~OL)

,. " R D" D" A'-')+ (Re < Du > AWOL + e < :u + 2-2 > MOL

< All> = - _1_ A" +.fiJ3« D:" > A ;t'OL +2 Re < D:; > A :.'OL) , (89)
.[3

for a biaxial solute dissolved in a biaxial phase formed of biaxial particles. As we see the order
parameters descnbing the phase biaxiality i.e., Re < D~ > and Re <D~ + Di~ > cause < Axx >
to be different from < Ayy >. Notice that the observation of phase biaxiality does not requITe an
off-axis molecular tensor or even biaxiality in the molecular lensor (i.e., it can be obtained even
when we have A :.'OL = 0). Indeed phase biaxiality can often be demonstrated using a uniaxiaJ
probe. For example the deuterium NMR spectrum of deuteriated benzene is often used: The phase
biaxiality can determine the quadrupolar splitting of pelpCndicular lines in the spectra m an X and

(81)

(82)= a + J(213) < A;-:'. >,

For a biaxial molecule the experimentally measurable anisotropy of < A > is

< A, > - < A, > = J(312) (A;t'OL < D:. > + 2Re(A~oL < D:; »}. (84)

Thus the measurement of at least two anisotropy values is required to determine both < D:, >
and < D;, >. Moreover the parameter of deviation from cylindrical symmetry, < D;, >, only
becomes measurable when the tensor A has an off-axis component so that A'-' ., O. If the molecule,
has effective cylindrical symmetry, in the sense that the order parameters< Do. > =

< D~ > 0..0 • then we have

< P, > = « A, > - < A, »/[(A MOL), - (A.OL)j. (85)
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a Y pair, as verified experimentally in various systems [6,12,52]. In a real situation observation
or not of mesophase biaxiality will, of course, depend on the relative magnitude of the teons in
equation (87) - (89) and on the sensitivity of the experimenl The splitting of the perpendicular
lines in an X and a Y pair will be proportional to

< P, > is the usual orientational order parameter familiar from work on nematies. By contrast
t = < cos(2n zld) > is a purely translational order parameter telling us how effectively the
molecules are arranged in layelS. The last type of parameter, a, is a mixed term related to the
extent of translational-orientational coupling [27-28].

2 Re < D:: > q::OL. (90) 5.2. NON-eYLINDRlCAL MOLECULES

where the q;;OL are spherical components of the quadrupolar tensor [12].

S. Positional-OrlentatJon.l Order In Unl..i.l Phases

We now consider a rigid non-<:ylindrically gymmetric molecule in a system with a layer structure
and positional disorder inside the layer, such as a smectic A or a smectic C phase. The probability
of fUlding the molecule at a specific position-orientation, P(z,Py), can be expanded as we have
seen earlier in a complete basis set of spherical harmonics. Thus generalising equation (62) we
fUld

The ortbogonality of the hasis set immediately gives the coefficients P_; we can thus write the
distribution as

5.1. CYLINDRICAL MOLECULES

Here we recall the description of ordering in systems with a layer structure and positional disorder
inside the layer, such as a smectic A phase. We assume the phase to be uniaxial around the z
laboratory axis and to be made of cylindrically gymmetric particles. We also assume the centres
ofmass of the molecules to be distributed at random in the xy plane while they may possess some
regularity (layering) along the z direction. The single particle distribution function can thus be
written as P(z, cos P) and expanded as

P(z,py) = L Ph" cos(2nn,zld}Do',(py).
£10"'.

1 I .. L 2L + 1 21t nzz L.
P(z,Py) = - • - L L L -- < cos(__)D.. >

4nd 2n",-o,•., d d

(95)

(96)

in a product basis set of Legendre polynomials for orientations and Fourier harmonics for position.
We assume the distribution to be normalised as

where the angular brackets have been used to indicate an average over P(z, cos P). The fUllt few
tenus are rather instructive, we have

p.. = lld, (94a)

(97) ,

(98)I: dpsin Pr dy r dx I," dy P(xy; py) = I.

when n,., n, '" 0 and

2rcn 21tn L
x cos(__' x)cos(__'y)D..(Py),

d
ir

dy

21tnz L
x cos(---;-)D..(Py), n, '" O.

21t n Z L_

The set nf positional-orientational order parametelS < cos(---;-) D" > allows a complete
characterisation of P(z,py).

The positional-orientational distribution for a non-<:ylindricaJly gymmetric molecule in a columnar
phase with some positional order of the columns in the (xy) plane, i.e., a D. rectangular discotic
phase, with the column axes parallel to Z, will be

I I U • I (2nn 2nn ,. )P(xy;py) = -- • -L L -- cos(__' x) cos(__'y) D.. (Py)
41td.. d'J 21t "..,\ L,.. d:r.dy d.. dy

5.3. COLUMNAR PHASES

(91)

(92)

(940)

(94b)PlO = 5 < P, > 1(2d),

Po," = < cos(2nzld) >Id,

" tld,

P(Z,cosP) = L L p.,P,(cosP)cos(2nn,zld), L even,
L-o ",-0 •

I: dP sin P I: dz P(z, cos P) = I.

Orthogonality of the basis gives at once the coefficient h~

p., = ((U • 1)1d} Idzdpsin PP(z, cos P)P,(cos P)cos(2rtn,zld), (93a)

= ((U • l)ld} < P,(cosP)cos(2nn,zld) >, n, '" 0, (93b)

hi = 5 < P,(cos P) cos(2nzld) > Id,
= 5a Id.

(94d)
The positional-orientational order parametelS

These frrst terms show the three kinds of order parametelS present in a smectic phase. Thus,
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(102)

p(z;py;;) = _1_
8n'd

I ~ L L_ 27tn z
+ -,- L.. (U + l)p..;,,,D.. (Py)cos(__• )exp(-iqh

41t d L.~.~. d

(107)

(104)

(105)

(108)

< D~(Py) exp(iq;) >.

P~;•• = < D~(M, - L) >.

P~"" = < exp(iq;) cos(2n n.z Id) >.

P':' .. = < exp(iq;) >; q = 0, ±1, ±2, ....

These parameters result when both L and q are different from zero in equation (103). They
describe coupling between internal and external degrees of freedom. A particular subset of these
parameters allows the recovery of purely orientational order parameters for the second sub-unit.
We also have, ofcowsc, the other combinations, purely positional, positional-orientational and the
following interesting ones.
Positional:·confonnational order parameter

These parameters should describe the coupling between the internal degrees of freedom, and the
position in a smeetic phase. For example, they could describe situations where the conformation
of the molecule changes as the molecule itself is displaced from the average layer position.

For a molecule dissolved in a uniform uniaxial phase, such as a riernatic we bave the simpler
orientational-internal distribution

We bave used the notation (B • A) to indicate the rotation from A to B, i.e., bere (M, . L) " a.
This type of expansion coeffICient is essentially an ordinary orientational order parameter for the
molecular frame. It gives the average orientation of the reference fragment of the molecule with
respect to the director frame, wbatever the conformation and the position.
Purely internal

, , . 2nn.z (103)
P..;,,, = < D..(Py) exp("l;) cos(-d-) >,

as the positional-orientational-<:onformational order parameters. We bave, even in this simple
system [16], numerous types of order parameters, i.e.,
Purely orientational

Tbese parameters describe the ordering of the second part of the molecule with respect to the fIrSt
irrespective of the overall orientation and position. They are quite important since they can be
considered expansion coefficients of the rotameric distribution P(;) in the fluid obtained by
integrating equation (102) over py; z.

P(;) = J dzdpsinPdyp(Z;Py;;) . (106)

Jdzd;dpsinpdyP(z;py;;)

The internal order parameters can be different from zero even in the isotropic phase if there is
some preferential orientation of the second fragment around the internal axis.
Mixed intcmal-extemal order parameters

(99)

(100)

(101)

I U + I (2nn 2nn )
P(xy;P) • 2d d + 2 E E dd cos(--'x) cos(--'y) P,(cos P)

• '1 ...,\ L ill , d. d,

2nn 2nn
• cos(---i/-x) cos(TY) P,(cos P),

o ,

J: dP sin P J.~ dx J.~ dy p(xy; P) = 1.

with

6. Rotlmerk Molecules

express any regularity in the two dimensional anangement of the columns and the coupling to the
molecular orientation. If the mesophase is formed of disc-like particles we can reduce the
distribution to

We now wish to mention briefly how the present treatment of order parameters can be applied to
molecules with internal degrees of freedom [16,21,53]. This is an important problem because most
molecules of practical interest [54,55] including molecules forming liquid crystals possess some
internal flexibility. The problem has received attention by various authors (see, for example,
[12,16,20,56)). Here we shall only consider one mechanism for internal flexibility, i.e., internal
rotation, since this ofteo represents the most important mechanism to large changes in molecular
shape. We shall give a specific example, that of a molecule with one degree of internal rotation
[21]. The molecule we have in mind is made up of two rigid fragments, i.e., two rings. We place
a molecular frame M, on one of the fragments and we introduce an angle; giving the orientation
of one ring with respect to the other. In a non·uniform system, i.e., if the molecule is dissolved
in a smeetic A solvent, the state of the m91ecule is a positional-orientalional-conformational one.
We can deflDe this state r,n,; by giving the position r and the orientation a" (M, . L) of frame
M, with respect to the laboratory frame together with the intcrnal angle ;. Accordingly wc write
the probability of flDding the molecule in a certain positional-orientational-conformational state
in terms of the probability of flDding the fIrSt fragment at orientation a with respect to the
laboratory director frame and the second fragment at an angle; from the fltSl, i.e., P(r,a,;). This
one particle distribution is then expanded in a composite Wigner.Fourier basis sel !fthe molecule
is in a uniaxiaJ smectic A phase

with
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P(py;;) = (l/8n') E (U + l)p;",D~·(Py) exp(-iq;).
L.... ,

(109) References

Figure 12. The probability distril>Jtion for finding an inter-ring angle '" for 4,4' dichlorobiphenyl dissolved
in oematic 152 [53].
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(110)p;", - < D~(Py) exp(iq;) >,

wbere the coefficients a.. are obtained by minimising the squared dilTerence between the
measured quantities and those obtained by integrating this equation. The formalism has been
applied to an analysis of the proton NMR speetrwn ofJ-phenyl-thiophene in two nematic phases:
PCH and Phase IV [21] and to 4,4'dichlorobiphenyl in the nematic solvent 152 [21]. Using a
maximwn entropy approach we have obtained from the experimental prolon dipolar couplings
purely orientational order parameters for the two rings as well as an approximate intemal
distribution. In figure 12 we show the results obtained for the purely internal distribution PC;)
giving the probability of finding one of the two rings of 4,4'dichlorobiphenyl with respect to the
other.

I'(~)

where the angular brackets denote a conformational-orientational average over the distnbution
P(py;;).

The maximwn entropy method outlined in section 4.5.1 can be generalised 10 yield LOe best
distribution compatible with a given set of order parameters. For instance if an experiment
determines a set of second rank order parameters p~., this distribution will be of the form

?(py;;) - exp[E a•• D~·(py)eXP(iq;)], (Ill)

"

where in general q = 0, ±I, ±2, ... and we have retained the notation l15ed in [16]. The angle ;,
WIth 0 ,;; ; ,;; 2n IS the dihedral rotation angle around the inter-fragments veetor connecting the
two parts of the molecule. The orthogonality of the basis functions immediately yields the
expansion coefficients as

O,t
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