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The paper introduces in a systematic way the concepts of order parameters and correlation
functions needed for a description of orientational ordering in a liquid crystal or a membrane
bilayer. The strong collision and the diffusion model for reorientation are examined in some
detail. After discussing the main characteristics of the very popular probes 1,6 diphenyl-
hexatriene (DPH) and perylene the theory of rotational depolarization of fiuorescence for a
probe in an ordered phase is introduced. Time-dependent and steady state experiments in
monodomains are discussed together with their angular dependence. Attention is then: focussed
on membrane vesicles. The theory for fluorescence depolarization is presented for probes with
any orientation of the transition moments with a view to investigating the feasibility of using a
certain probe to extract information on ordering and dynamics. Applications of the fluorescence
depolarization technique to model and biological membranes are briefly reviewed. An appendix
introducing irreducible tensors and Wigner rotation matrices properties is provided in order to
keep the paper reasonably self-contained.
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1. Introduction

Time-dependent fluorescence depolarization represents a useful tool for
the investigation of molecular motions in liquids [1-3], in liquid crystals
[4~6] and in biological systems [7-19]. Although the basis for a theoretical
understanding of the reorientational depolarization phenomenon dates back
to Perrin’s work [1] nearly 50 years ago, the great development of the
fluorescence depolarization (FD) technique can be ascribed to the advent of
nanosecond [7] and, more recently, picosecond pulse [3] techniques. In these
experimental methods a short burst of plane polarized light of suitable
wavelength is used to promote fluorescent probe molecules in solution to
some excited level. The polarization of the fluorescent emission from the
probe is then measured as a function of time. A common, convenient way of
defining the polarization characteristic of the emitted radiation in an isotro-
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pic system is through the ratio
r(8) = (Iy(t) = L)/ (Iy(e) + 21.(2))

where Ij(¢t) and I,(¢) are fluorescence intensities parallel and perpendicular
to the direction of polarization of the exciting light. It is easy to see that this
polarization decay may contain information on the molecular motion. Let us
assume that the only two relevant processes taking place in the experiment
time scale are the decay of fluorescence and the reorientation of the
molecule. What is actually observed in the experiment depends on the
relative time scales 7 and 7z of the fluorescence and reorientation process
[4]. Thus if 7r < 7R, the molecule emits before the non-equilibrium dis-
tribution of excited molecules created by the flash has had time to relax to
equilibrium. In this case a constant value of the polarization ratio, r(0), will
be observed. The opposite situation arises if 77 > 7x. In this limit the initial
non-equilibrium orientational distribution will have completely relaxed to
equilibrium before fluorescence effectively takes place. Only a limiting value
r(«) is observed. In ordinary isotropic liquids every orientation of the probe
is, in principle, equally probable and the initial polarization of the radiation
will be eventually lost completely i.e. r(o)=0. The situation is quite
different in ordered fluid systems (mesophases) such as liquid crystals or
membrane bilayers, since there the orientational distribution is intrinsically
anisotropic. Therefore in an aligned liquid crystal we do not expect even the
long time ratio limit r(«) to go to zero but to depend on the orientational
order for the probe. In the other limiting situation, when the fluorescence
decays before the molecule has effectively reoriented, a value of r(0)
dependent on the degree of orientational alignment will be obtained [4].
For what concerns the FD investigation of membranes, one important
point to notice is that the bilayer interior is very similar to a liquid crystal at
least in the sense that there exists orientational order, with molecules
tending to be parallel to a preferred orientation called the director. Under
normal circumstances this preferred direction should be parallel to the
bilayer normal. In a real experimental situation an ideal mono-domain
bilayer may be rather difficult to obtain and the sample will contain a
distribution of bilayers and therefore of directors. If we deal with vesicles, as
is often the case, this distribution of directors will be spherical and the
sample macroscopically unoriented. Until a few years ago, this led to some
misinterpretation in the literature with the application to the analysis of FD
data in membranes of the classical Perrin type theories developed for truly
isotropic systems. This theory predicts in particular that r(e) should be zero,
as well as attributing the unobserved decay to this zero value to a large
viscosity in the bilayer. This is not necessarily the case. The direct ap-
plication of Perrin’s theory to vesicles n(eglects in fact the all important local
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order in the bilayer. Since FD is a molecular technique, where the probe
senses its local environment, it turns out to be useful and indeed often
necessary to apply theoretical methods employed in the description of liquid
crystals to properly describe fluorescence polarization decay in membranes.
Thus, in a sense, liquid crystals serve as useful models for studying vesicles,
while these in turn serve as models for real membranes. This point of view
has shown its validity and potentiality in various techniques, ranging from
Nuclear Magnetic Resonance (NMR) [20] to Electron Spin Resonance
(ESR) [21, 22] to FD itself [19]. Part of the problem in applying the liquid
crystal concepts to the membrane field seems to be a communication gap. This
is further complicated by the fact that many terms are common to the
membrane and the liquid crystal field, while their significance is more or less
profoundly different. Thus terms like order, fluidity, etc. are used in both
areas. Actually it seems that certain terms have been often used as synony-
mous in some membrane work, e.g. rigidity and order, while a more careful
analysis shows them to be two quite different types of property. The liquid
crystal approach to membrane bilayers should help in clarifying and render-
ing more precise the use of these concepts. In view of this, the plan of the
present paper is as follows. First we shall discuss some general concepts
needed for the description of a system with orientational order [23]. We
shall then describe the theory of FD in ordered and locally ordered systems.
We shall limit ourselves to considering time dependent and steady state
experiments where the depolarizing mechanism is reorientational and dis-
cuss briefly how this limit can be achieved in a real experimental situation. A
few popular fluorescent probes [24] such as 1,6-diphenylhexatriene (DPH)
and perylene will be discussed in some detail, together with a brief review of
their applications in the membrane field.

This approach will involve a little bit of mathematics. We shall try to keep
this to a minimum, but after all we think that its introduction requires little
in the way of apologies. Experimental techniques become more sophisti-
cated and powerful and, from the outside, more complicated all the time. It
is clear. that paralleling an increase in sophistication of the experimental
methods there is an-attendant wealth of information produced. It is not
surprising that this in turn will increase the complexity of the theoretical
treatment required to interpret the data properly. It should be pointed out,
however, that using a complicated piece of equipment does not necessarily
mean knowing every detail of its inside workings. Rather it entails being
familiar with the general principles of its functioning, knowing how to
operate it properly and when that particular instrument should be used
instead of another one. Similarly much of the theory presented is implemented
as a set of one or more computer programs which can be largely used as a black
box.

From what we have just said it should be clear that we do not aim to
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provide a comprehensive review of all that has been done using fluorescence
depolarization in the membrane field. We shall also not discuss in detail
arguments such as the perturbation of the membrane bilayer produced by
probes etc. since these points have been taken up in a number of recent
papers and reviews [24]. Rather we shall try to provide a coherent account
of the physics necessary to plan a FD experiment and to analyze the data
produced by such an experiment, together with a somewhat selected review
of applications.

2. The description of ordered systems

2.1. Static properties

A brief introduction to the theoretical description of orientationally
ordered systems is necessary to establish notation and to discuss the
parameters we may then try to measure using FD. We shall concentrate in
particular on a systematic introduction of the concepts of orientational
order, and later on, of correlation times. To start with we consider here the
description of a system as simple as possible, i.e. of a classical, rigid,
cylindrically symmetric probe particle with centre of mass at position r and
orientation {2 embedded in an ordered fluid. The assumption of cylindrical
symmetry means that only two angles suffice to specify the molecular
orientation (cf. Fig. 2.1). Notice, however, that real molecules are often
neither cylindrically symmetric nor rigid, for they can have e.g. flexible
chains or rings that can rotate with respect to each other. We shall therefore
have to expect that, beyond a certain level of sophistication, features like
deviation from cylindrical symmetry and flexibility will have to be taken into
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Fig. 2.1. The two angles specifying the orientation of a cylindrically symmetric molecule.
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account. We shall come back to this point later on. The complete static
information about the system is represented by its configuration, i.e. by the
set of positions r; and orientations 2 of all the particles. The orientation of
each cylindrical particle can be determined by two polar or Euler [25] angles
(o, B). A knowledge of the enormous number of positional and orientational
coordinates specifying the various configurations is fortunately unnecessary
if we are only interested in calculating average properties. Suppose for
example that the distribution giving the probability for a molecule to have a
certain position (r + dr) and orientation ({2 + d€2), PY(r, £2), is known. In this
case the average of any property A(r, 2) relating to a single molecule can be
calculated as [23]

(A)= f dr dQ A(r, )PV, Q)N @.1)

where the integrals over dr = dx dy dz and d{2 = da sin 8 d8 extend respec-
tively to the sample volume V and to the angular measure, here 4, while
the angular brackets denote an ensemble average. The factor of (1/N) in
Eqn. 2.1 comes from the normalization of the distribution P"(r, 2) to the
total number of particles N.

The one-particle or singlet distribution P® therefore contains all the
microscopic information necessary to calculate one particle properties. In
turn the structure and ordering of the system will be reflected by P®". Ideally
a complete statistical description of one particle properties would be
obtained by studying the singlet distribution in various phases and examin-
ing its changes at the various phase transitions. For a uniform fluid, e.g. a
nematic liquid crystal, where there exists long range orientational but not
positional order, the singlet probability will be independent on the position
of molecules relative to the laboratory frame:

PO(r, Q)= pP(2) 2.2)

where p = N/V is the number density and P({2) is a purely orientational
distribution normalized to unity, i.e.

fdﬂp(ﬂ):l

For an ordinary isotropic fluid P(£2) does not depend on the molecular
orientation and therefore it must be a constant, P(2) = 1/(4).

Notice, however, that a membrane bilayer is not uniform. Even neglecting
the important heterogeneities in the bilayer plane we have changes across
the bilayer, i.e. along our z axis. Thus we have a positional-orientational
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distribution P%(z, 2). This is not normally adopted and a purely orien-
tational distribution is implicitly employed. This can be done in two limiting
situations. One is when we probe the whole bilayer at once. In this case we
really consider

P(Q)= f dz P(z, )

Experimentally this situation can arise e.g. when using a probe with size
comparable to the bilayer thickness. Another, different case is that of a
probe that ideally reports the situation of the bilayer at a certain depth z. In
this case the ordering information obtained, as described later on, will be a
local one. An approximation to this idealized situation is obtained with
probes like the anthroyl stearic acids (AS) which, when ionized, anchor with
their carboxylic group to the polar heads in the bilayer surface, while having
the chromophoric group at a certain depth z, inside [24]. Having said this we
can limit ourselves to considering the purely orientational distribution P(£2)
for a mono-bilayer and exploit the formal similarity with that of a uniformly
aligned nematic with the director along, say, the z direction. As mentioned
already this is a function of the two polar angles giving the molecular
orientation of the particle in question i.e.

P(02) = P(a, B)

if our molecules have cylindrical symmetry. The detailed form of P({2) is of
course unknown, but some constraints imposed on it by symmetry can
nevertheless be easily taken into account. We know from experiment that
the symmetry of the mesophase is uniaxial, i.e. that rotating the sample
about z nothing changes. This means that the probability for a molecule to
have orientation 2 = (a, B) should be the same whatever the angle a. More
concisely

P(a, B)= P(B)2m (2.3)

Another experimental finding is that turning the aligned sample upside
down nothing changes. Thus we should have

P(B)= P(m—B) (2.4)

This is quite reasonable if we think of the molecules of interest as spherocy-
linders (cf. Fig. 2.1) or other cylindrically symmetric objects where head and
tail are not distinguishable. Our distribution should also be re-normalized,
so that
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Fig. 2.2. A histogram of the singlet distribution function P(e, x), x = |cos 8| for a 10 x 10X 10
lattice of particles studied with the molecular dynamics methods [26]. Particles on sites i and j
interact with the nearest neighbour potential U;; = —&P5(cos B;). Distributions shown for reduced
temperatures kT/e = 0.50(A), 0.79(B), 0.88(C) and 1.30(D).

f dB sin BP(B) = 1 @.5)

In Fig. 2.2 we show as an example the full singlet orientational distribution.
obtained using the molecular dynamics method of computer simulation of a
simplified model of oriented system [26].

In a real experiment it will be extremely difficult to get complete in-
formation on the distribution P(£2). A useful approach, however, is that of
trying to approximate P(£2) in terms of a set of quantities that we can obtain
from experiment. We need for this a set of functions orthogonal when
integrated over dBsin 8. Such a set of functions is that of Legendre
polynomials [27], Py (cos ), for which we have
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TABLE 2.1
THE EXPLICIT FORM OF THE FIRST SIX LEGENDRE POLYNOMIALS P, (cos 8)

Pycos B)=1 Ps(cos B) = (Scos® B — 3 cos B)/2
Pi(cos B)=cos B Py(cos B)= (35 cos* B —30cos> B+ 3)/8
Py(cos B)= (3cos’ B—1)/2 Ps(cos B) = (63 cos® B8 — 70 cos® B + 15 cos B)/8
. 2
f dp sin BP;(cos B)Py(cos B) = L1 SN (2.6)

The explicit form of these Legendre polynomials is really very simple and
the first few terms are given in Table 2.1, while in Fig. 2.3 we show a graph
of Px(cos B) and P,(cos B) versus cos . -
Legendre polynomials have the useful property that P;(cos 8) is an even
function of cos B if the rank L is even and an odd function if L is odd

Py (cos B) = (—=)-Pr(—cos B) 2.7
Since cos(w— B)= —cos B this means that in writing the orientational

distribution in terms of P;(cos 8) functions only even L terms need to be
retained. Thus we can write

P(B)= fiPi(cosB) L even 2.8)

Multiplying both sides of Eqn. 2.8 by Py(cos 8) and integrating over
sin BdB:

j P(B)Py(cos B)sin BdB =, fu f P, (cos B)Py(cos B) sin BdB (2.9a)
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Fig. 2.3. The second and fourth rank Legendre polynomials Py(x) and Pi(x) plotted as a
function of x = cos 8.
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we find the coefficients in Eqn. 2.8 as

fn= 2N2+ 1 (Pn) (2.9b)

where we have used the notation

(Pn)= j dp sin B8 Py(cos B)P(B) (2.10)

The averages (Py) represent our set of orientational order parameters [23]. The
knowledge of the (infinite) set of (Py) would completely define the dis-
tribution. We can write

P(B) = 1/2+ (5/2) P2 Ps(cos B) + (9/2XPyP4y(cos B) + ... @2.11)

The first term contains the second rank order parameter
3 ’ 1
(Py) =5(cos’ B)— 5 (2.12)

It is easy to see that (P,) has some properties that we would intuitively
expect an order parameter to possess. For a system of perfectly aligned
molecules where 8 =0 for every molecule (P,) = 1. At the other extreme,
for a completely disordered system such as an ordinary isotropic fluid we
have

(cos? B) = f dg sin B cos? B / f dB sin B = 1/3 @.13)

and therefore for a disordered system we find (P;)=0. On going from an
ordered to a disordered system the order parameter jumps discontinuously
to zero if the transition is of the so called first order type, i.e. if it is
associated with an entropy jump. At a continuous, second order transition
the change in order parameter is instead a smooth function of temperature.
Usually there are also pre-transitional variations in the isotropic phase. We
shall see later on that the second rank order parameter (P) is proportional
to the fluorescence polarization anisotropy. This anisotropy can therefore be
used to monitor orientational phase transitions [28].

Quite similarly to what we have just said, the higher order parameters
(P, (P, etc. are, respectively, one for complete order and zero for an
isotropic system. We may perhaps ask if there is therefore an advantage in
considering more than one order parameter [29]. That this is the case
becomes apparent if we refer to Fig. 2.3 where the angular variation of the
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Legendre polynomials Py(cos 8) and Pu(cos B) is shown as a function of
cos B. As we can deduce from Fig. 2.3, if we measure (P,) and find that
(P») >0, this will mean that the majority of molecules has a long axis
orientation 8 between zero and the so-called magic angle, 8~ 54.7°, or
cos“(l/\/3) the zero of P,(cos B). If, on the other hand, (P,) <0, then we
may expect that, on average, molecules will have an orientation giving a
negative P, (e.g. B between 54.7° and 90°). Let us now consider P, and (P,).
The zeros of P, between 0° and 90° fall at 8 ~30.5 and 70.1. Suppose we
have now measured (P,) and (P,) with some experimental technique. If
(P») >0 and (P;) >0 then the distribution of orientations will be such that
the majority of molecules has a long axis orientation between 0° and 30.5°.
An example of distribution function of this type is reported in Fig. 2.4.

We might, however, find a positive (P,), as before, and a negative (P,).
This would suggest a different type of orientational distribution, e.g. possibly
a tilted one with a peak between 30.5° and 54.7°. The qualitative physical
significance of other combinations of order parameters can be deduced in a
similar way. What we have just said could be extended if we knew (Pg) etc.
Every higher order parameter restricts the bounds on Pf(cos 8) and thus
increases our knowledge on the system [30]. This does not mean, of course,
that the expansion in Eqns. 2.8, 2.11 is so rapidly convergent that we only
need the first few terms to reconstruct P(8). Actually this will not be the
case, at least in general. On the other hand a knowledge of (P,) as well as
of (P,;) can be very useful in discriminating between various models of
molecular organization inside the bilayer. To examine this important point
we assume that every molecule is moving in an effective potential created by
all the other molecules in the system U(cos B).

This effective potential, or pseudopotential, or potential of mean torque
[31, 32] will obey the same symmetry restrictions introduced before for the
singlet distribution. Thus it will be possible to approximate it as

U(cos B) = D, c1Pi(cos B) 2.14)

-This effective potential can in turn be used to calculate order parameters etc.
using the Boltzmann expression [33]

P() = exp{— U(Q)/KT} / f Q2 exp{— U(Q)/kT} 2.15)

where k is the Boltzmann constant, T the absolute temperature and {2 gives
the molecular orientation. Thus, e.g.

(Py = f dp sin B Py(cos B) exp{— U(cos B)/kT} /

f dB sin B expi— U(cos B)/kT}



189

24 25
10 1

08
06
<P> P(3)
04

02

0

0 02 04 06 08 t0
<P> i)

L3 Yy g
B

Fig. 2.4. An example of orientational distribution function P(8) corresponding to {P;) >0 and
(Ps)> 0 (arbitrary units) plotted as a function of the angle B between molecule and mesophase
symmetry axis.

Fig. 2.5. The fourth rank order parameter {(P,) versus the second rank order parameter {P,)

calculated employing the second rank potential (Eqn. 2.17) in the Boltzmann average (Eqn.
2.15).

The coefficients ¢; are proportional to the strength of the solute-solvent
interaction between the probe molecule and the surrounding solvent mole-
cules forming the anisotropic phase. They express the aligning potential
acting on the probe. It is quite intuitive, and it can also be proved using a
mean field theory for mixtures [31], that the coefficients ¢, will be propor-
tional to the rank L order parameter for the solvent and to a solute-solvent
interaction coeflicient, u;. If the probe concentration is vanishingly small, one
has [34]

U(x)= kT D, u (P )P.(x) L even x=cosf (2.16)
L

Consider as an example one of the most popular models of orientational
ordering, i.e. the so-called Maier-Saupe model [35]. This was originally
proposed for nematic liquid crystals formed of molecules interacting via
attractive and anisotropic London dispersion forces treated according to a
molecular field theory. It corresponds, in the general expansion seen above,
to a truncation of the series to the first symmetry allowed term, i.e. [31]

U(x) = kTux(PyPy(x) @.17)

This truncation is consistent not just with a dispersion-forces interaction but
with any second rank type anisotropic interaction, whatever its physical
origin. Indeed the simple interaction, Eqn. 2.17, has proved to be amazingly
successful in describing ordering in thermotropic liquid crystals [36]. One
interesting point is that calculating order parameters using Eqn. 2.17 we
cannot get {P,) to become negative. In Fig. 2.5 we show the order parameter
{(Py against {P,) calculated for the Maier-Saupe-like potential. Since the
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potential Eqn. 2.17 contains only one parameter, plotting (P,) versus {P»)
gives a universal curve, without adjustable parameters.

It is therefore quite clear that if we wish to investigate the validity of using
the Maier-Saupe-like distribution in describing ordering in a certain aniso-
tropic we should try to calculate not only (P;) but (P,) as well. One of the
aims of this paper will be to examine in detail when this is possible.

On the same lines measurements of second and fourth rank order
parameters may allow testing of theories of structure and conformational
mobility in a membrane bilayer [37-39]. In this case it would be best of
course to obtain {(P,) and {P,) along the chain i.e. at various positions inside
the bilayer. An example of this type of application is the testing [40] of the
gauche-trans model put forward by Seelig [41].

2.1.1. Deviation from cylindrical symmetry

We have assumed up to now that our probe molecule has effective
cylindrical symmetry, i.e. that only one order parameter (P.) is sufficient to
specify ordering at rank L. This is often a good approximation and indeed
one that has been up to now universally used in FD studies. It is, however,
just an approximation and as data become more precise it may well be no
longer satisfactory. This has already happened in NMR studies of molecules
dissolved in liquid crystals [42]. There the assumption of cylindrical sym-
metry was used for a long time, while now full consideration is made of the
fact that a molecule may be e.g. lathe-like rather than cylindrically sym-
metric. Here we shall briefly introduce the additional order parameters
necessary to describe such a molecule. We consider the solvent phase to be
uniaxial so that an Euler angle o specifying the rotation angle around the
director will not be needed. We then write down a general expansion for the
probability distribution of finding a molecule in an angular volume element
B+ dB, y+dy around B, v.

Here vy is the Euler angle giving the rotation about the molecular long axis
necessary to specify the molecular orientation in a laboratory fixed system.
The distribution is

PB, v)=2> QL+ 1)fp.D5OBy)/(47w) L even (2.18)

where the set of Wigner functions D§,(08y) has been used for the expansion
since it provides a complete set over the angular space spanned by S, y. The
coefficients f;, = (D#,) represent the new set of order parameters [23].
Notice that the functions D§,(08y) are essentially spherical harmonics Y},
(cf. Appendix). Only even terms are allowed as in previous expansion due to
the assumed uniaxiality of the mesophase.

To illustrate the significance of the new order parameters let us confine
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ourselves to the case of rank L = 2 and assume the molecule to be a biaxial
object with D,, symmetry, for example anthracene. The existence of a
molecular symmetry plane causes only terms with even n to contribute to
Eqn. 2.18. The non-vanishing order parameters are therefore

(Do) = (Pp (2.19a)
(D&} =(Dj,-2) (2.19b)

(D% is just the order parameter describing the long axis orientation with
respect to the director that we have already seen. (D) represents instead a
new type of order parameter giving the alignment of the short molecular
axis, i.e. of an axis perpendicular to the long axis [32]. In NMR work an
alternative notation for order parameters of molecules deviating from cyl-
indrical symmetry is often employed. Instead of second rank order
parameters (D3,) a Cartesian ordering matrix or Saupe matrix S is given,

Sap = (3laly — 82)/12

where I, are the direction cosines of the director in a molecule fixed frame
[42]. The two notations are of course equivalent and we report for easy
reference in Table 2.2 the relation between the two sets. The Cartesian
formulation shows perhaps more intuitively that the secondary order
parameter (D%) refers to the alignment of an axis perpendicular to the long
axis.

The variation of the order parameters (D%} and {(D?%) with temperature is
quite different as can be shown with a molecular field theory of mesophases
formed by non-cylindrically symmetric molecules [32). In Fig. 2.6 we show
this behaviour for various deviations from cylindrical symmetry as obtained
from a molecular field calculation where molecules are assumed to interact
through a non-axial polarizability tensor a. The non-axiality parameter A is
in this case [32] A = (3/2)"*(ay, — ayy)/[2a,, — ax — a,y]. The limiting case of
cylindrical symmetry is recovered when A = 0. From the point of view of a

TABLE 2.2

THE RELATION BETWEEN THE CARTESIAN ORDERING MATRIX COMPONENT
S.s» a, b = x,y, z AND THE WIGNER ROTATION MATRIX AVERAGES (D2,)

S.. = (D)

Su — S,y = G)H(D) +(D§-2}
Se = —@)"H(D5-1) + (D)}

S,z = i@)*(D}) + (D§-1)}

Sy = iG)H(DE) - (DF-}
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Fig. 2.6. A plot of the secondary order parameter (P%) = (3/8)"*(sin’ B cos 2y) versus reduced
temperature T/T,, where T, is the order-disorder transition temperature, for various values of
the deviation from cylindrical symmetry parameter A.

probing technique, various considerations are important. The first is that
when analyzing experimental data a satisfactory theory should tell us when
this type of information is going to affect the data and if we can extract it.
The other is that the possibility of molecular biaxiality should be taken into
account when choosing a particular probe. If we are only interested in long
axis ordering then biaxiality could be a nuisance and it may be worth
shopping around for a fluorescent probe with vanishingly small deviations.
In this respect an estimate of the biaxiality parameter A from molecular
polarizability could be useful. If on the other hand the extra order
parameter (D%) can be extracted from the experiment, then this information
on the short axis alignment may offer additional insight on structure in the
bilayer.

The cases treated up to now of cylindrical and biaxial molecules in a
uniaxial mesophase are just special cases of a more general description for
rigid molecules of any symmetry in a certain ordered phase [23]. In this case
P(0) is a function of all the three Euler angles (a, B, v)

P(\Q) = 2 fLmnD{Hnn(n)

The expansion coefficients are identified as Wigner rotation matrix averages.
We have shown elsewhere how group theoretical methods can be
employed in determining the non-vanishing order parameters for molecules
of various symmetry [23]. l

Notice that even if we have accounted for deviations from cylindrical|
symmetry we still have assumed the molecule studied to be a rigid one. This'
will not be the case in general, for example if we treat a probe like one of
the popular anthroyl stearic acids (AS). In that case all that we say applies to
the rigid fluorescent segment we are actually looking at, e.g. the anthracene
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chromophore in an AS probe. The ordering of the rigid group of interest will be
determined in such a case by the intramolecular as well as by the overall
motions. Thus the present treatment can still be applied as long as only the
ordering of the rigid part with respect to the laboratory frame is considered
sufficient [40]. If instead details of intramolecular flexibility are sought, a
more general treatment should be developed [44-46]. Similar arguments
apply to the case of intrinsic fluorescent groups attached to proteins or other
molecules exhibiting segmental mobility {47—49].

2.2. Orientational dynamics

As shown in the previous section, the description of single particle static
orientational properties can be effected in terms of the singlet distribution
P(0), and of its expansion coefficients in a suitable basis set, the orien-
tational order parameters. Quite similarly the description of single particle
orientational dynamics can be realized in terms of a joint probability
distribution function P(£2,0; £2t) [26, 50]. This gives the probability that the
orientation of a particle is (2, at time zero and {2 at time t. We consider for
the moment a monodomain system with the Z axis along the director.

P(£2,0; £2t) can then be expanded for ¢# 0 in a product basis set of Wigner
functions, much in the same way as we did for the singlet distribution P({2).
We find

P(Q60; 2) = 3 P (t)D5n(20)* D5 (2) (2.20)

The expansion coefficients can be obtained by exploiting the orthogonality
of the Wigner functions. This gives (cf. Eqn. A7)

Prmn(t) = QL+ DEL + 1XD5n(Q0) D (42)*) /6477 @21

Equation 2.20 can be simplified using group theory by requiring the joint
probability to be invariant under the various symmetry operations of the
mesophase and of the constituent particles. Without going into details of
how this is done [23] we only quote here two important results, which are
also easy to get by direct inspection. First if the mesophase is uniaxial the
requirement of invariance upon rotation about the Z axis yields 8, in Eqn.
2.21. Secondly, if the solute molecule has effective cylindrical symmetry then
another selection rule, §,, is obtained [50]. If we confine ourselves to this
limiting case the expansion coefficients of the joint distribution are, apart
from a factor, the orientational correlation functions

G =(D5n(20)D7,(2)*) (2.22)
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These orientational correlation functions have a fundamental role in the
description of how and how fast a molecule reorients. We shall see later on
that FD methods offer in principle a direct route to the determination of
some of the most important of these functions, i.e. those of rank two GZ,(¢).
Even if higher rank and cross rank correlations enter the general dynamic
description (Eqn. 2.20) they are not accessible in normal FD studies and we
shall concentrate in what follows on the calculation of the second rank
functions G,..(t) = GZ,(t), where we also leave the rank labelling super- -
scripts implied.

The calculation of the orientational correlation functions (Eqn. 2.22) has
recently been performed for a simplified anisotropic model system using the
method of molecular dynamics [26]. However, it should be said from the
start that the first principle calculation of these functions is currently out of
reach for ‘realistic’ models. It is therefore necessary to resort to a parametric
description. In this approach a set of assumptions on the dynamics are made
and the orientational correlation functions are determined in terms of a set
of parameters characterizing this motion (e.g. decay times etc.). We start by
assuming that the reorientation process is a stochastic Markov process
[50-52]. This implies that the joint distribution P(£2,0; £2t) can be written as

P((20; 2) = P({20)P (£2/42) (2.23)

where P({2/{2t) is the so-called conditional probability or rotational pro-
pagator. It gives the probability that, if the molecular orientation is (2, at
time zero, it will be £2 at time t. The limiting values of P(£2,0/42) for short
and long times ¢ can be obtained at once. Thus at time zero we are certain
that the orientation {2 is the one we started from and

P(02,/020) = (2 — )

where 8(£2 — () is a Dirac delta function. At the other limit the probability
of finding the molecule at orientation 2 will be independent on the initial
orientation (2, and only depend on the equilibrium probability of {2 itself.
Thus

lim P(£20/02t) = P(12)

{—0c

where P(2) is the equilibrium Boltzmann probability already seen (cf. Eqn.
2.15). By using as definition Eqn. 2.23 the orientation correlation functions can
be written as

Gon(t) = j dﬂoP(ﬂo)Din(ﬂo)J d2 P26/ Q) D7 (02)* (2-24)
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The orientational correlation function calculation is thus reduced to
determining P(£2y/42t), as well as P({2,) and to an integration. Even though
the G,.(¢) affords a rather complete description of reorientation, very few
techniques can yield their full time decay. Therefore it is often expedient to
introduce correlation times

Tom = f " {Gon(6) — Gon(0)} A1 Ginn (0) — G ()}

corresponding to areas under the normalized correlations. The parameters 7,
give an indication of the rapidity of reorientation as we shall see later on.
A useful symmetry relation between the various G, is [50]

Gmn(t) G—m—n(t) G—mn(t) Gm—n(t) oo C) //n/‘ ,/f”j (225)

Let us now turn to the calculation of the conditional probability P(£2/{2t).
It is known that the conditional probability for a Markov process obeys an
integral master equation and that under certain conditions [51] this can be
reduced to a differential equation. We shall assume this to be the case and
consider in brief two rather different limiting situations.

2.2.1. The strong collision model

The strong collision model [53] represents a process where the molecule
of interest undergoes sudden changes in its orientation at time intervals ¢
The time taken for the transition from one orientation to the other is
supposed to be negligible: the orientational probabilities before and after
the sudden change (collision) are assumed to be given by the equilibrium
Boltzmann distribution. In practice the molecular orientation before and
after each collision is assumed to be uncorrelated, as for the case of large
angular jumps. Under these conditions the rate of change of the conditional
probability P(£2y/£2¢) is simply

2 P = [P(@) - P/ (2.26)

where 7, is a characteristic decay time.
The solution of this first order linear differential equation subject to the
initial condition P(£2,/£20) = 6({2— 02) is

P/ = 6(0 — ) exp(—t/7.) + P(2)1— exp(—#/1.)}
= P(2)+{8(2 — ) — P(2)} exp(—1/7.) (2.27)

This conditional probability obviously reduces to the equilibrium probability
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for very long times, as it has to. Thus, in general, the correlation function
G (t) defined by Eqgn. 2.24 will reduce to [(D2,)]* at very long times. It is
easy to calculate the correlation function G,, at any instant of time ¢
employing Eqn. 2.27. This yields for a cylindrically symmetric probe and
mesophase

Gmn (t) = {(D%nnD%n‘r» - <P2>280m60n} exp(_ t/Tc) + <P2>280m60n (228)

One problem with Eqn. 2.28 is that the use of a single correlation time
ignores the anisotropic nature of the solute. If we consider a long rod-like
molecule, for example, Eqn. 2.28 assigns the same correlation time to
rotations around the long axis and of the long axis itself. Physically we
would expect instead reorientation around the long axis to be much easier
than the other with, therefore different decay times for correlation functions
reflecting these different motions. This deficiency has been empirically
removed by assuming [53] that the correlation time depends on n but not m,
so that

Gmn (t) = {(DznnD%n.n) - <P2>280m80n} exp(_ t/Tn) + <P2>280m80n (229)

In practical applications the second subscript of G,,(f) turns out to indicate
the component of a certain (2nd rank) tensorial interaction so that this
generalized strong collision model allows each component to decay with its
own correlation time 7,. This can be more easily understood by looking at
the explicit form of Gy (), G(?) i.e.

Goo(t) = (Pcos B(0)}Py[cos B(D)])
Got) = V'3/8(sin? B(0) sin? B(t) exp[i2y(0)] exp[—i2y(r)])

where we recall that B is the angle between the director and the molecule
symmetry axis while y refers to a rotation about this symmetry axis. Thus
Gy(t) only refers to symmetry axis reorientation and the physical
significance of the associated decay time 7, can be easily understood as that
of a long axis reorientation time.

The interpretation of the correlation time 7, associated with Gy(?) is not
so immediate. However, if we are treating a long molecule where the angle
B varies much more slowly than vy then the time decay 7, of Gg(t) will refer
essentially to rotations around the molecule axis as shown in Fig. 2.7.

Equation 2.29 can be written in terms of order parameters by coupling the
two Wigner rotation matrices as in Eqn. A12. The explicit results are given
in Table 2.3.

From what we have said it seems clear that the strong collision model
offers a simple empirical form for the orientational correlation function. It
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X

Fig. 2.7. A sketch illustrating the qualitatwe significance of the orientational correlation times
T and 72 (see text).

gives the correct result at zero and infinite time and assumes an exponential
decay in between. The strong collision assumption gives the same rate of
decay for correlations of various rank. On an intuitive basis we expect this
type of reorientation to hold for a solute molecule reorienting in a solvent of
bulkier molecules. In this case the collisions with the surrounding molecules
might cause the large angular jumps implicit in the model. This finds
confirmation at least for isotropic liquids. An opposite limiting situation
arises when the solute molecule reorients by small random angular steps,
corresponding to the so-called diffusion model.

2.2.2. The diffusion model
In an ordered fluid the reorienting molecule is subjected to random
solvent collisions as well as to a systematic ordering torque caused by the

TABLE 2.3

EXPLICIT EXPRESSION FOR THE WIGNER MATRIX CORRELATION FUNCTIONS
INITIAL VALUES G (0)=(D%,D%,) IN THE CASE OF CYLINDRICALLY SYM-
METRIC PROBE AND UNIAXIAL MESOPHASE

m n Gpn(0) = (D}, D%

0 0 1/5 4+ 2{P2)/7 + 18{P4y)/35
#1 1] 1/5+(P)/T— 12(Py)/35
+2 0 1/5— 2{P)/7 + 3 P)/35

0 +1 15+ (P)/7 — 12(Py)/35
+1 +1 1/5+ (P)/14 + B(P;)/35
+2 +1 1/5 = {Pa)7— 2{Pa)/35

0 +2 1/5 — 2(P2)/7 + 3{Py)/35
+1 +2 1/5— (P27 — 2AP/35

+2 +2 1/5+ 2(P)/7 + (P70
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effective aligning potential. Here we introduce and solve the diffusional
dynamics equations. If only the final expression for the G,,(f) is of interest
(Eqn. 2.41) this part can be omitted.

The equation of motion for the conditional probability for a particle
undergoing a rotational Brownian motion subjected to a potential U({2) is,
in coordinate free form [50],

= r% P(£2/02) = T'P(00/ )

~-3(pa %)P(wm) — IDIP (02020 2.30)

This is subjected to the initial boundary condition
P(£2:/020) = 8(2 — (&) (2.31)

In Eqgn. 2.30 I' is called the stochastic operator, J is formally an angular
momentum operator in a particle-fixed frame and in dimensionless form [25]
and finally D is the rotational diffusion tensor of the particle. The single
particle potential U is a function of the molecular orientation. When U is a
constant, Eqn. 2.30 reduces to the well known equation of rotational
diffusion in an isotropic medium [54]; the eigenvalues and eigenfunctions of the
stochastic operator are in that case

E;,,=D{J(J + 1)+ (DyD, - 1)n% (2.32)
and
2 12
() = (3t) Dli) 2.33)

provided the diffusion tensor is cylindrically symmetric, as we shall assume
from now on. The components Dy and D, refer respectively to reorientation
around the symmetry axis and around an axis perpendicular to it. Thus we
expect Dy> D, for a rod-like molecule (prolate rotator) and Dy< D, for a
disk-like one (oblate rotator). The presence of the term containing the
potential in Eqn. 2.30 causes in general I" to be non-hermitian. However, it can
be shown that, if the detailed balance principle holds, I' can be made Hermitian
by the transformation

'=p\2rp» (2.34)

where P is the equilibrium orientational distribution function and I is the



199

Hermitian stochastic operator. The existence of this transformation guaran-
tees that I' can be diagonalized and that its eigenvalues are real. The
eigenvalues of I' constitute a non-negative sequence; the reciprocal of the
eigenvalues are the relaxation or decay times of the process. The first
eigenvalue of I' is always zero, corresponding to the equilibrium probability
which, being unaffected by the stochastic operator, has an infinite relaxation
time. We shall now examine briefly the unsymmetrized problem, originally
solved by Nordio and his group [50, 55]. They express I' in Euler angles,
where it has the form

TP/ ) = V3 P(nr,m:)ﬁs“;f_) - 2 gn Py Y dﬁ (2.35)

where V7 is the Laplacian in terms of the Euler angles (aBy) describing the
orientation of the molecule with respect to the director. The operator I' is
then given a representation in a Wigner rotation matrices basis (i.e. as we
have seen, the eigenfunctions of JDJ = V3). For a cylindrically symmetric
probe reorienting in a uniaxial mesophase it is clear that the angular
momentum projection pseudo-quantum numbers m and n are still good
labels for the eigenvalues of I'. In other words the total representation of I'
factorizes in diagonal blocks labelled by m and n. In Nordio's notation the
(mn) block is called —D;R™ and one has

D! 3“ C" = (R™)yCF" (2.36)
~

where the vector C™ is defined through the expansion
P(Qo/ 1) = 3, C7"(1)D,n(02) (2.37)

The explicit expression for the R™ matrix elements is

(R™)y = =[J(J + 1)+ (DY/D.— D)n*|dyy
~(1/2) 3, w(PYCLI'T;0m)C(LI"T; 0n I (J + 1) = J'(J"+ 1)+ L(L + 1)}
L#0

(2.38)

The parameters u; are the expansion coefficients for the orientational
potential of a molecule (Eqn. 2.16). The axis of symmetry of the diffusion
and of the ordering tensors are assumed to coincide. It has been shown [55]
that the solution to Egn. 2.35 subject to the initial condition Eqn. 2.31 is

P(Q/02) = 3 (21 + D)™ ) (x ™) ki exp(D1rg 1) D a(20)D7,0(2)  (2.39)
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where y is the transformation that diagonalizes R:
X 'Ry=r (2.40)
A lower case notation is introduced [4] for the diagonal eigenvalues matrix.
Substituting in Eqn. 2.24, we see that the diffusional correlation functions

can be written for a cylindrically symmetric molecule reorienting in a
uniaxial mesophase as a series of exponential decays.

Gon(t) =2 (b™ )k exp(t/Thn) (2.41)
where
Thn = I{D pR"t— (Dy— D, )n% (2.42)

The pre-exponential coefficients (b™), are found to be
(6™ = (1/5) 3, @I + 1XD3a D5 (x™ )k (X ™ Vi (2.43)

where the average (D?2,D!.) can be expressed in terms of order parameters
using Eqn. A12.

The solute-solvent interaction coefficients u; give the expansion for the
effective potential acting on a probe molecule with its axis at an angle 8
from the director as we have seen in Eqn. 2.16. In the numerical calculations
we restrict ourselves to the second rank (L = 2) term in the expansion, thus
getting an effective potential of the Maier-Saupe type as in Eqn. 2.17.

For many practical cases the sum over an infinite number of exponentials
in the correlation function expression (Eqn. 2.41) can be truncated to just
the first term, giving a decay similar to that expected from a strong collision
model, i.e.

G (1) = {Gpn(0) = G ()} Xp(— 1/ Tiun) + G () (2.44)

where we have dropped the superscript K on 75,. In Figs. 2.8 and 2.9 we
show as an example a plot of the decay times and of the pre-exponential
coefficients in the expansion of the correlation Gy(t) truncated to the third
term. This correlation function refers to motion of the molecule symmetry
axis, as we have seen in §2.2.1. As Figs. 2.8 and 2.9 show, the expansion can
be quite safely truncated to the first term over a wide range of order
parameters (P,) and thus of temperatures. On the other hand, this one
exponential approximation is not always satisfactory, especially at relatively
high order. We have not mentioned viscosity at all in our treatment of
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Fig. 2.8. The dependence on the order parameter (Pa) of the first three decay times (7w)x in the
series expansion for the diffusional correlation function Gl(t).

Fig. 2.9. Same as Fig. 2.8 but for the pre-exponential coefficient (6™ ).

rotational dynamics and since this is an often used concept we may wonder
where it could come into the picture.

For an ordinary fuid the well known Stokes-Einstein relation links the
diffusion tensor to molecular dimensions and to the fluid viscosity 7. For a
spherical molecule

D = kT/(67 V) (2.45)

with k& Boltzmann constant, T' temperature and V molecular volume.
Slightly more complex expressions hold for anisotropic molecules [54]. If
the Stokes-Einstein relation had general validity a determination of D for a
molecule of known geometry would allow determination of the molecular
volume. However, even for isotropic liquids, application of Eqn. 2.45 often
gives inconsistent results. In particular putting in a macroscopic n frequently
gives molecular dimensions smaller than the Van der Waals ones [54]. This
can be ascribed to the stick boundary conditions implied in deriving Eqn.
2.45. In other words in obtaining the Stokes-Einstein relation it is assumed
that the solvent sticks at the solute surface. Different boundary conditions.
where the solvent instead ‘slips’ at the surface have been implemented by
Hu and Zwanzig [56] and give a rather conflicting view of rotation, where
resistance to angular motion comes from the amount of solvent which the
solute has to move around in order to rotate. Without going into details which
are inappropriate here it is easy to see that the relation between diffusion
coefficient and viscosity is far from obvious even in ordinary fluids.

In an ordered fluid like a liquid crystal or a membrane the situation is
further complicated by the fact that the viscosity itself is a tensor, being
different in different directions [57]. To the best of our knowledge, a
generalization of the Stokes-Einstein relation applicable to anisotropic fluids
has not yet been obtained. It seems appropriate therefore to avoid expressing
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microdynamics in terms of viscosity and describe instead rotational mobility
and more loosely ‘fluidity’ in terms of diffusion tensor values or correlation
times.

Notice that up to now we have not mentioned the problem of deviations
from cylindrical symmetry introduced earlier on. This has been treated in a
perturbative fashion [58] and can be introduced if necessary. For our
purposes here this represents too much of a complication, in view of the fact
that dynamic effects of non-cylindrical symmetry are expected to be
relatively difficult to observe, separately from static ones. We shall thus
retain throughout the assumption that dynamic properties can be satis-
factorily described by an effective cylindrical symmetry hypothesis. We have
not entered into the problem of what model to use when trying to interpret
real experimental data. This will be briefly examined later on.

3. Fluorescent probes

In the previous section we have gone in some detail into the description of
the static and dynamic properties of a molecule dissolved in an anisotropic
fluid phase. In the next section we shall discuss how to obtain some of the
parameters introduced by studying the time dependent and steady state
fluorescence polarization. Here, however, we think it is appropriate to
define what we mean by fluorescent probes [7b, 8, 24, 59-61] and to examine
some of the characteristics they should possess to be useful in the liquid
crystal and membrane field.

Fluorescence [62, 63] is a two-step process resulting from absorption of a
photon followed by emission from the excited molecule between two states
with the same multiplicity. If we assume these processes to be independent
we can write the emitted fluorescence intensity from a molecule at time ¢
after excitation as a product

I(t) = Pa(0) Per(1)F (1) 3.1

where Pu(1), Pem(t), F(t) are, respectively, the probability that the molecule
is excited, that it emits and that the molecule is still excited at time ¢ [64].
We shall not be much concerned for the moment with the detailed form of
the intrinsic fluorescence decay F(r). We can assume, however, that it can be
described by an effective characteristic time 7z In most practical applications
F(t) could be an exponential or a sum of exponentials.

According to perturbation theory [63, 65] the absorption intensity from a
weak intensity light source is proportional to the square of the matrix
elements pu = (Yo/pt/y') where g is the dipole moment operator and s, ¢/’
are, respectively, the ground and excited state wave function. The transition



203

moment g can be considered a molecular property and for our purposes we
can think of it as a unit vector fixed in the molecular frame. Quite similarly
the emission intensity will involve an emission transition moment g =
(" /o), where " is the wave function of the emitting state. The state "
may be different, in general, from ¢’ due e.g. to intramolecular relaxation
processes. This means that the transition vectors g, fi may well not be
parallel, but be at a certain angle § to one another instead. Since we may
vary the exciting light wavelength we can to a certain degree choose p and
therefore vary 8. It has been known for a very long time that the angle 6 can
be determined by measuring the polarization anisotropy ratio r, for the
probe of interest dissolved in a transparent frozen medium (a glass) [66]

ro = (2/5)P;(cos 8) (3.2)

In the literature, results are often given in terms of polarization P

P= (- 1)L+ 1))
— 31,/ + 1o) 3.3)

Incidentally, Eqn. 3.2 will come out as a limiting case from the general
treatment in the next section.

As the name suggests, a probe molecule has to report information on the
environment surrounding it. There are essentially two situations we can
consider. One is when we are interested in obtaining information on the
substrate. In this case it should be remembered that the information
obtained is always second hand, mediated through the solute-solvent inter-
action coefficients, as discussed earlier. Thus proper care should be taken in
ensuring a minimum of perturbation by the probe to the bilayer, and
generally in choosing a probe that mimicks as far as possible one of the
constituents of the membrane system. Another possibility, however, is that
we are interested in the behaviour of a foreign solute molecule in the
system. Thus the behaviour of, say, cholesterol in the membrane can be
investigated by choosing a probe that resembles this solute as far as possible.
If this second type of situation is of interest, the perturbation to the system
by the probe is something that is inherent to the problem studied rather than
an undesired side effect.

From the point of view of simplifying, or even making possible at all an
analysis of the results obtained from a polarization anisotropy investigation,
there are some optimum characteristics that a fluorescent probe ought to
possess. These ‘desiderata’ mainly follow from the need to properly describe
the molecule we are using as a reporter.

A first, rather obvious and yet often neglected requirement is that the
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molecule used should be well characterized from the spectroscopic point of
view. Its transition moments, quantum yield, the polarization of the bands of
interest, the existence or not of pronounced solvent and temperature effects
should be-known [62]. It is important to have an idea of the fluorescence
lifetimes in a system with characteristics similar to the one that is under
investigation. The relative time scales of the fluorescence decay and the
reorientation should be such as to render order parameter and possibly
- dynamic parameters observable [4, 19]. It is convenient to choose a probe
that is rigid and that has a shape deviating significantly from a spherical
one, such as a rod-like or a disk-like shape. A cylindrical symmetry or at
least a well-defined symmetry (e.g. biaxial) is an advantage. In this way
information on the ordering can be more easily obtained. The probe should
of course have characteristics of chemical, thermal and photochemical
stability under the conditions of the experiment. It is important to know the
properties of the probe that determine its partitioning in the system [24]
(e.g. if the probe is charged, hydrophilic, lipophilic). The specific interactions of
the probe can be turned to advantage here since they may allow selective
investigation of portions of the membrane.

From this long list it seems clear that it is next to impossible to find an
ideal probe possessing all the desired properties. In practice a relatively
small number of probes are used in the great majority of polarization studies.
We shall consider here in some detail two of the probes most commonly
used in membrane investigations. We shall see that even for these sup-
posedly well-known probe molecules further spectroscopic investigations are
needed.

3.1.1,6-Diphenylhexatriene (DPH)
DPH [24, 61, 67-74] is certainly one of the most popular probes for

studying membrane fluidity [%0—13, 16,24, 59] (cf. §5). It is a fairly rigid,
elongated molecule, about 13 A long, planar in the ground state (Fig. 3.1). It

Fig. 3.1. The molecular structure of DPH together with the molecular axis system employed.
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is normally assumed to have cylindrical symmetry. While this seems to be a
reasonable assumption, it is also one that is waiting confirmation, e.g. from
NMR studies of the second rank order parameters.

In view of its universal use DPH might be expected to have predictable
and well characterized spectroscopic properties. This is not quite the case
and indeed the photophysics of DPH presents several remarkable and
unusual features, e.g. when compared to condensed aromatic ring systems,
whose interpretation is still the subject of active controversy [70-74]. Here
we wish to give a brief discussion of those aspects of DPH spectral
properties that should be kept in mind when using it as a probe. To
establish notation we recall that an undistorted DPH molecule belongs to
the C,;, point group, which has four possible representations, A,, A,, B, and
B, [65]. The ground singlet state S, belongs to the totally symmetric 'A,
representation, and the (m, 7*) states are either 'B% or 'A%. The first two
excited singlets, S; and S, are invariably (s, 7*) states in aromatic hydro-
carbons [62], so that in DPH their symmetry is either 'B¥ or 'A%. The
'B% < 'A, transition is symmetry allowed, while the 'A%} < ' A, transition is
forbidden. On the experimental side we recall that DPH absorbs light in
near UV and it emits with very high quantum yield in the blue region of the
visible spectrum. In Fig. 3.2 we show the absorption spectrum of DPH in
three organic solvents of different polarity.

The absorption spectrum changes as the polarity and refractive index of the
solvent change. This fact and the high absorption coefficient of the ab-
sorption maximum (g43 ~ 80 000 1 cm™ mol™') have been associated with the
strong transition moment of the fully allowed = — #* band. Differing from
the absorption spectrum, the emission spectrum of DPH changes very little
with a change in solvent. In particular the emission maximum is relatively
insensitive to changes in polarity, viscosity and temperature [73]. The

Fluorescence Polarization

Absorbance and Fluorescence Intensity

250 300 350 400 450 500
A(nm)

Fig. 3.2. The absorption and fluorescence spectrum of DPH in various organic solvents:
ethanol(—); dioxane (---); hexane (---). Also shown is the polarization of fluorescence
P = (Jy— I,)/(I)+ 1.) as a function of wavelength determined in polypropylene glycol at T =
—50°C [79].
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emission spectra has therefore been assigned to a weak transition [71].
Another characteristic is that the absorption and emission spectra fail to
show a good ‘mirror symmetry’; the emission spectrum is rather structure-
less and shows little overlap with the absorption spectrum. In general this
behaviour follows from differences between the nuclear configurations in the
ground state and in the first singlet excited state [75]. The radiative lifetimes
obtained through the relation 7rsap = 75/q Where 7¢ is the experimental
fluorescence decay time and g the quantum yield, differ markedly from the
ones obtained from the Strickler-Berg equation [76] which relates fluores-
cence lifetimes to absorption intensities. This behaviour is normally shown
by compounds that present distortions in the mirror symmetry relationship
[75]. The experimental radiative lifetimes in aromatic and aliphatic solvents
differ widely. For instance 7rap in cyclohexane is 15.5ns, while it is only
8.6ns in benzene. The solvent refractive index dependence alone seems
unable to explain the effect. The radiative lifetimes increase with tem-
perature in various solvents while being essentially constant in propylene-
glycol {70].

For probe applications it is interesting to notice that the fluorescence
lifetime 7 changes quite sensibly when changing solvent, especially when
the solvent polarity varies [68]. In Table 3.1 we report the resuits obtained
by various authors for the decay time of DPH in a number of solvents.

The complex behaviour of DPH can be attributed in general to the fact
that its two excited singlet states are very near in energy (800 cm™ for DPH
in hexane [72]) so that their relative position can be affected by pertur-
bations induced by solvent polarity for example, or even by conformational
changes in the excited state. There have been, however, a number of models
and conflicting interpretations put forward in the literature about the
assignment and the characteristic of the emitting state [72-74]. The
argument has now been going on for some 20 years. A turning point was
provided by the theoretical calculations of Schulten and Karplus [80] who
showed that the lowest excited state in polyenes with N >2 is of the 'A}
type. Mixing of the excited states linked to a conformational change has
been invoked [71]. It is clear that in this case the dipole may vary with an
effect on the polarization as we shall see in the next section.

The fluorescence decay of DPH in organic solvents has been reported to
be always mono-exponential [67]. A bi-exponential decay for DPH in
ethanol at —25°C has however been found by Birch and Imhof [81].

We now move to the other characteristic of DPH as a fluorescent probe.
A useful property is that DPH has well separated absorption and emission
bands, which limits the probability of secondary absorption of the emitted
photons and makes possible an effective filtering off of the residual excita-
tion light.

The fluorescence decay of DPH has been found to be temperature
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TABLE 3.1

FLUORESCENCE DECAY TIMES 7+ FOR DPH IN SOLVENTS OF DIFFERENT
DIELECTRIC CONSTANT ¢ AND VISCOSITY 7 [77,78]

Where available reorientational diffusion times 7z and initial values of the polarization
anisotropy decay ry (cf. §4) have also been reported.

Solvent € TCC) Te(ns) n(cP) ro TR= ! (ns) Refs.
6D,

n-Hexane 1.89 25 15702 029 [68]
3-Methyl pentane 191 20 154 0.37 [68]
n-Heptane 1.92 22 156+02 039 [68]
Cyclohexane 2.02 20 124 1.00 [61]
Methyl cyclohexane 2.02 20 13.5x02 073 [68]
Perfluoro-n-hexane 25 325+05 0.67 [68]
1,4-Dioxane 221 25 78+0.1 120 [68]
Benzene 228 20 6.1x0.1 0.65 [68]
Chloroform 4.81 20 6.5 0.58 [107]
Ethanol 2430 25 56 1.07 m
Methanol 3263 25 58 0.55 [107)
Liquid paraffin . 92 9.8 400 0.365 18.0 [9b]
' 19.8 9.7 200 0.359 7.5 [ob]
30.0 98 100 0.346 43 {9b]
39.5 99 60 0355 24 (9b]
Glycerin -5 5.6 ~16000 0395  448.1 [9b]
414 20 39 1200 0392 955 {ob]

independent for large temperature intervals in low dielectric constant
solvents [67]. On the other hand there is a temperature variation in polar
solvents [67]. It seems that these variations have often been neglected in
steady state and time dependent FD measurements in membranes.

3.2. Perylene

Perylene is a flat aromatic molecule with ‘a shape roughly approximating
that of a disk with a diameter of 8 A (Fig. 3.3). It is convenient to choose the
molecular z axis for perylene perpendicular to the ring so as to accentuate
its near cylindrical symmetry about the short D, axis.

Since perylene will presumably align with the ring parallel to the director
when dissolved in an ordered phase, we expect its order parameter (P,) to be
negative (cf. §2.1). The absorption spectrum of perylene (Fig. 3.4) presents
two main, well structured, transitions [61] corresponding to two transition
moments lying in the ring plane and perpendicular to one another (Fig.
3.3a). The fluorescence spectrum of perylene in ethanol is reported in Fig.
3.4. The emitting state has the transition moment parallel to the molecular x
axis [82]. The polarization spectrum of perylene in propylene glycol [16b, 83]

—50°C also shown in Fig. 3.4 indicates that the angle between absorption
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Fig. 3.3. (a) The molecular structure of perylene together with the direction of the transition
moments competing for the first two transitions and the assumed molecular axis system. (b) The
disk-like shape assumed for perylene.

and emission moments varies with the excitation wavelength. The polariza-
tion value of P~ 0.5 at A =410 nm indicates parallel oscillators. On the
other hand excitation at A = 252 nm corresponds to P = —0.27 thus indicating
transition moments essentially perpendicular to each other. Intermediate
values can be obtained, e.g. at A, = 314nm a value of P ~0.14 is found,
corresponding to an angle between absorption and emission dipoles of 45°
[16b]. This interesting feature allows different types of molecular rotation to be
studied in turn. It has been used in anisotropic rotation investigations of
organic solvents [82, 84] and model membranes [16b, 85] and internal motion
in DNA [86].

The absorption spectrum and the molar extinction coefficient of perylene
are relatively insensitive to variations in the solvent dielectric constant.
Similar behaviour is shown by the emission spectrum even though small
solvent dependent variations have been reported [87]. In view of this
perylene is not suitable as a polarity probe for the membrane bilayer.
Because of its lipophilicity perylene is assumed to penetrate the non-polar
region of the bilayer.

=4
o
"
-

4
3

(=]

Fluorescence Polarization

1
Q
a2

Absorption

Absorbance and Fluorescence intensity

'
Q@
R

o

250 300 350 400 450
Atnm)

Fig. 3.4. The absorption and emission spectrum of perylene in ethanol (—), dioxane (---),
hexane (- --). The spectra in ethanol and dioxane are superimposable. Also shown is the
polarization P as a function of wavelength for perylene in frozen propylene glycol at T = —50°C
[83].
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The absorption and emission spectrum of perylene overlap sensibly and
exhibit a good mirror symmetry. This suggests that the nuclear configuration
is basically the same both in the ground and excited state. It also indicates
the absence of relatively complex photochemical pathways like those for
DPH.

Non-single exponential behaviour has been found in dipalmitoyllecithin and
egg lecithin dispersions [16b]. Typical average decay times in organic solvents
[61, 75, 82, 88-90] vary from 4.7 ns in paraffin [82] to 7.5 ns in benzene [61].

4. Fluorescence depolarization theory

Our aim here is to derive general model-independent expressions for the
fluorescence polarization decay. By separating the geometric and the mole-
cular part of the problem we shall show that a unique formalism can be
applied to a variety of experiments on uniformly aligned systems [4] and
their angular dependence [91,92] as well as to experiments on spherical
vesicles [19] and biological membranes [93]. We shall then show the
theoretical decay curves predicted on the basis of the reorientation models
introduced earlier on for a DPH-like and a perylene-like probe. To start
with we need to recall the origins of the fluorescence polarization
phenomenon.

In an idealized fluorescence depolarization experiment an instantaneous
pulse of light, plane polarized in a certain direction e;, impinges on the
sample containing the probe molecules. The emitted light is then collected in
another direction through an analyzer, set at a direction of polarization e;. In
such an idealized experiment the fluorescence intensjty at time ¢ i.e. after a
time ¢ has elapsed from the initial pulse, is given by [64]

Ig(t) = (le:- £ (0)Ples - B(OPF (1) @.1)

where an isotropic fluorescence decay F(t) has been assumed. Here p and jx
are the absorption and emission transition dipole moments. As mentioned in
the previous section we can consider here u, & as two molecule-fixed unit
vectors; we imagine, in general, i to be different from p. We can in fact
have, for instance, non-radiative electronic relaxation from the initially
excited state which can vary if the exciting wavelength varies, to the emitting
state which is normally the first excited singlet state. If this is the case, the
internal relaxation process leading from the u to the fi direction would give
rise to a partial depolarization of the emitted radiation. We assume this
internal process, if present, to take place on a time scale much faster than
our observation time scale. Thus it provides only a time-independent factar
affecting the initial value of the intensity and of the polarization anisotropy.
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Returning to Eqn. 4.1 we indicate with the angular brackets an ensemble
average over all the motions experienced by the probe molecule up to time
t. We consider here only rigid molecules and assume that reorientation is the
only depolarizing mechanism. We also assume implicitly that reorientation is
unaffected by the internal relaxation of the molecule leading from g to .
This should be a reasonable approximation in view of the previous assump-
tion that internal processes are settled by the time reorientation is just
beginning to be effective. Within this set of assumptions we can rewrite Eqn.
4.1 as

I(t) = (le; - m(£2o, O)ley - £(€2, PIF (1) 4.2)

when the molecule is excited at an orientation {2y and is observed after a
time ¢ at an orientation £2 in the laboratory frame. To simplify the treatment
we now make explicit reference to the laboratory coordinate system shown
in Fig. 4.1. We assume the director of the liquid crystal, or equivalently our
bilayer normal, to be at an angle £ = (d — L) with respect to the laboratory
Z axis. We assume for the moment the exciting light beam to be travelling
along the X axis towards the sample, imagined at the centre of the
coordinate system. Two common geometries for observation are (a) along
the Y axis (perpendicular geometry) and (b) along the X axis (parallel
geometry). In any case the polarizers on the incident and emitted light
pathway can be placed vertical (V) or horizontal (H). It is convenient to
rewrite Eqn. 4.2 in a way that completely separates the geometric and
molecular parts of the problem. As we shall see this can be effectively done by
first introducing polarization tensors

Fig. 4.1. Laboratory coordinate system for a FD experiment. Light polarized parallel (V) or
perpendicular (H) to the Z axis impinges on the sample placed at the origin. The emitted
fluorescence is observed through a polarizer (a) along the Y axis (perpendicular geometry) or
(b) along the X axis (parallel geometry). '
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E,' = e,-®ei Ef = ef® € (43)

which contain the geometrical information about the experiment, and ab-
sorption and emission tensors A and A

A=p®p A=AQ®a 4.4)

containing the spectroscopic information. The notation &) indicates a
direct product. More explicitly A; = ee; etc. By expressing Eqn. 4.3 in terms
of the irreducible tensor components of the polarization and emission
tensors (cf. Appendix), we find the intensity as a sum of contributions
labelled by the ranks L, L' of the irreducible components:

L=F@) > I¥@¢) L L=02 4.5)
LL .
where
I (=3 EF"EF™(ALL(0) AL (1)*) | 4.6)

and (AL75(0) AL{E(f)*) are absorption-emission cross correlation functions.
Components of rank one are missing in Eqn. 4.5 since the tensors involved are
symmetric. The explicit expressions for the irreducible tensor components can
be obtained from Table Al. For convenience we report in Table 4.1 the
components of A. Knowing the Cartesian components u,, i, i,

iy = p sin 9 cos @ (4.7a)
py = sin 9 sin ¢ (4.7b)
i, = @ cos O 4.7¢)

of a transition moment with polar angles ¥ and & in the chosen molecule

TABLE 4.1

IRREDUCIBLE SPHERICAL COMPONENTS OF THE DIRECT PRODUCT TENSOR
A =pu®pu IN TERMS OF THE CARTESIAN COMPONENTS OF THE VECTOR u

AY=—(uk +pt+up)3”

A = 23 H{uk - (pk + r¥y2
AP = F(uxpz + ipypz)

AY? = (uk — p¥ = 2pxuy)2
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fixed frame, we can work out immediately the irreducible component A*"
using Table 4.1.

To complete the separation between geometric and molecular variables
we now transform the transition tensors from the laboratory to a molecular
frame. We do this in two steps. We transform first from the laboratory frame
shown in Fig. 4.1 to one with z axis parallel to the director (director frame).

Abfs = S Dh(d - L)*Abtk , @.8)
and then from the director to the molecule frame. We find
Abf =, D (t—d)y* Al 4.9)

where the notation DL (F' — F)* is employed to indicate the rotation matrix
carrying the frame F into F’. Substitution in Eqn. 4.6 gives the intensity
components as

IF (@) => EFrEF™ Ay ALl
x DL (d - LYy*D% ,(d — LXDEL,0— d)*D Wt — d)) 4.10)

where we have assumed the director to be fixed in the laboratory frame at
least on the experiment time scale. If we now consider the mesophase to be
uniaxial in the director frame, symmetry demands &, in Eqn. 4.10. If we
also assume the probe to have effective cylindrical symmetry, the requisite
of invariance for a rotation about the molecule axis yields the further
restriction 8,,. We find therefore I4(t) as a sum of four contributions, i.e.

Li(t) ={I% + I¥f(d — L)+ If(d — L)+ Iif(t, d — L}}F (¢) (4.11)
where
I%=1/9 4.12)
I%(d — L)= (1/3) 3, E?"D%0(d — LM)YXP) A}, (4.13)
I3(d — L)= (1/3) 3, E?™" D%g(d — LYPo)A¥oL (4.14)

I2Xt,d — L)= S, E?™ E3™ D2,(d — L)*D%4(d — L)* G,(f) @.15)
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We see that only the I%%(t, d — L) contribution is time dependent and carries
dynamic information. The molecular information is all contained in the
quantity G,(?),

G,(H=72 Ao Ao G (1) (4.16)

while G,,(¢) is the usual definition of a Wigner rotation matrix orientational
correlation function (cf. Eqn. 2.24)

G, (1) = (D% (0 — d)DZ%,(t — d)*) 4.17)

Here the generalized spherical harmonic DL, (t— d)* gives the rotation
carrying from the director to the molecular frame at time z. We are now in a
position to specialize the general model-independent Eqns. 4.12-4.15 to
various types of experimental situation.

In practice we shall consider the four intensities obtained by placing the
polarizers vertically or horizontally.

(a) Polarizer and analyzer parallel to Z: the required irreducible com-
ponents of the polarization tensors are

Elz,m‘ — (2/3)1/25m0 (418)

(b) Polarizer parallel to Z and analyzer parallel to X: the required
irreducible component of Ej is:

E%m — —(1/6)1/26".0 — (8m2 + 6m—2)/2 (420)

while the E; component is given by Eqn. 4.18.
(c) Polarizer parallel to X and analyzer parallel to Z

E?™ = —(1/6)28,, — (Sma + Sm_2)I2 4.21)

with E; coming from Eqn. 4.19.
(d) Polarizer and analyzer parallel to X: these are just Eqns. 4.21 and
4.20.

4.1.1. Monodomain sample [4]
We consider a macroscopically aligned sample with the director parallel to
the laboratory Z axis. The rotation carrying the laboratory into the director
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frame is in this case a null one, corresponding to the identity. Thus

D?,,(000) = &,
and we find
1% = (IBEFPY ARG

.2f0 = (1/3)E2 0<P 2>A%405L

1% = 3 E¥™E}"Gu(0)

4.22)

@4.23)

4.24)

(4.25)

Substitution of Eqns. 4.12 and 4.23-4.25 in Eqn. 4.11 gives immediately

L (0)/F(t) = 1/9 + 2/3)"( PY(A + A29)/3 + (2/3)Go(t)

Lx(t/F(t)= 1/9+ 3—(61)—,2 (PHRA — A2%)— (1/3)Gi(t)
Iyz(t)/F(t)= 19+ ﬁ (PYRA™ — A2%) — (1/3)Gy(t)
Lx (t)/F(t) = 1/9— Tg)—, (PHA+ A2+ (1/6)Go(t) — (1/2)Galt)

LodF(t)=1/9— —5(61—)7 (PHAX+ A2+ (1/6)Go(r) + (1/2)Galt)

where we have used the relation
A2‘n" - (_)nAZ,—n

which in turn can be easily verified from inspection of Table 4.1.

4.26)

4.27)
(4.28)
(4.29)

(4.30)

4.31)

QOur equations show that the equality of Eqns. 427 and 4.28 thus of Iy
with Iy is only obtained if A2" = A" i.e. when the absorption and emission
transition moments have the same orientation in the molecular frame. The
intensities obtained in Egns. 4.26-4.30 can be combined in various ways for
a more convenient comparison with experiment. We consider here explicitly

a polarization ratio

r(t) = (Izz(t) — Lxx () (Izz(2) + 21zx (1))

(4.32)
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that can be determined from both a right angle and a parallel geometry
experiment. From Eqns. 4.26 and 4.27 we find

)= {g AP+ G} 173 + @3y AP} (@33)

for a cylindrically symmetric probe in a uniaxial mesophase. Within the
assumptions of statistical independence of the fluorescence and reorientation
processes r(t) depends only on ordering and reorientational dynamics. The
polarization ratio in Eqn. 4.33 reduces, in the limit of vanishing order, to the
usual one for isotropic liquids [4-10] i.e.

r(6) = (1) = 1))/ (I(6) + 21.(1)) (4.34)

where the subscripts refer to the analyzer being set parallel or perpendicular
to the exciting light polarization direction.

Limiting expressions for the fluorescence intensities and the polarization
ratio r(t) for short times can be derived at once using the results for the
initial values given in Table 2.3 for

G (0) = (D% D7) (4.35)

As an illustration of the use of Eqns. 4.26-4.30 let us consider the very
simple case of a cylindrically symmetric probe with both the absorption and
emission transition moments parallel to the symmetry axis. As we discussed
in the previous section the fluorescent probe diphenylhexatriene closely
approximates such a system. For this type of probe A" = (2/3)'7§,,, and

Izz(6)/F (1) = 1/9 + (4/9XP2) + (4/9)Goo(2) (4.36)

Izx ()/F(t) = 1/9 + (1/9XPy) — (2/9)Goo(2)

= Ivz(1)/F(t) (4.37)
Iyx ()/F(£) = 1/9 = (2/9KP2) + (1/9)Goo(#) — (1/3)Go(2) (4.38)
Lex (D/F (1) = 1/9 — 2/9XP2) + (1/9)Goo(1) + (1/3) Gino(1) (4.39)

Thus the time dependent polarization ratio is
r(t) = (P2 + 2Goo(1))/(1 + 24 P2)) (4.40)

for such a probe. The limiting value of r(t) for long times is just
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() = (Py) (4.41)

since Gyo() = (P,)*. The other limiting value is for ¢ = 0. Using Table 2.3 we
find

r(0) = {2/5 + (11/TXP2) + (36/35X P}/ (1 + % P2)) “442)

Since Ggo(0) = ((P.)?), = (P,)* we have for a probe of this type r(0) = r(x). The
polarization ratio starts from a value depending on {P,) and (P,) and goes to
a plateau value equal to (P,). Time dependent experiments on oriented
systems can therefore give important information. From the plateau value
(P,) can be extracted with its sign, thus allowing establishment of the
average orientation of the probe. The order parameter (P,) is even more
valuable since it cannot be easily obtained with other techniques [23]. The
time dependence of r(t) is, in this simple case, given by the long axis
correlation function G(t). An experimental decay if available can thus be
simulated by assuming a strong collision or a diffusional model for the probe
reorientation (cf. §2). A best fit to the experimental spectrum will give the
motional parameters (correlation times or diffusion coefficients) implicit in
these models.

In Fig. 4.2 we show the theoretical r(t) curves predicted using the diffusion
model for a DPH like probe subjected to the anisotropic potential Eqn.
2.17.

In the more general case that the absorption or emission dipole are tilted
away from the axis of effective cylindrical symmetry other correlation
functions apart from Gg(t) may come in. This is shown more clearly if we
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Fig. 4.2. The time-dependent polarization ratio r(t) for an elongated probe with transition
moments parallel to the long axis. The curves are calculated according to the diffusion model
for (P2) equal to (A) 0.0, (B) 0.2, (C) 0.4, (D) 0.6, (E) 0.8.
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transform the tensor components A>", A*" from the molecule-fixed frame
to their principal frames:

A" = (213Dl Q)
A = (2/3)” D)

where 2., ., are the orientations of the absorption and emission dipole,
respectively, in the molecular frame. Due to the assumed cylindrical sym-
metry of the probe one of the dipoles, u say, can always be taken to define
the zx plane in the molecular frame. In this case (2, = (08,0), while
Qo = (aB.0). Thus the dynamic terms G, (¢) in Eqns. 4.254.30 can be
written as (see Eqn. 4.16):

> Gon (HAZ"A" = (2/3) S G () D26(08,0)* D% ef3.0) m=0,=*2
(4.43)

We see incidentally that only if at least one of the two transition moments is
parallel to the molecular z axis it is possible to express results in terms of
just the angle between the two dipoles. An exception is the case that the
orientational correlation function G,,(¢t) does not depend on n. This is
highly unrealistic in a liquid crystal as we discussed in §2. The importance of
correctly placing the transition moment orientation in the molecular frame is
well illustrated by the case of perylene. As we saw in §3, we may ap-
proximate perylene with a disk-like, or oblate ellipsoid, particle. While the
emission transition dipole is parallel to the x axis (cf. Fig. 3.3), the ab-
sorption moment varies from being along the y axis when A, ~ 256 nm to
being itself parallel to x when A, ~ 430 nm [82, 86]. The predicted decays
vary quite dramatically in the two cases as shown in Figs. 4.3 and 4.4.

4.1.2. Steady state measurements

Although it seems in principle preferable to perform time dependent
experiments whenever possible, fluorescence polarization measurements
under continuous illumination conditions are much simpler and are routinely:
performed in very many laboratories. It is therefore interesting to examine
what information these steady state experiments can offer. The fluorescence
intensities are in this case time averages of Eqn. 4.2. For a certain geometry

We shall assume for convenience that the fluorescence decay is mono-
exponential i.e.
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Fig. 4.3. Predicted polarization anisotropy r(z) for an oblate ellipsoidal probe oriented in a
monodomain when the absorption and emission transition moments are perpendicular to one
another and to the disk axis (e.g. perylene at A, ~ 256 nm). Diffusional reorientation with
Dy/D; = 10 has been assumed. The disk axis order parameters are (A) 0.0, (B) -0.2, (C) —0.3,
(D) —0.4. -

Fig. 4.4. Theoretical polarization anisotropy decay r(t) curves for a disk-like probe with
transition moments along the x axis in a monodomain (e.g. perylene at A, ~ 430 nm). The
curves have been calculated according to the diffusion model, assuming Dy/D, = 10 and order
parameters equal to (A) 0.0, (B) —0.2, (C) —0.3, (D) —0.4.

F(t)= ;1; exp(—#/7r) 4.45)

even though more complex forms can be considered with little effort.

General expressions for various geometries can be obtained from Eqns.
4.26-4.30 using one of the models seen earlier on for the correlation
function.

We consider here the case of a cylindrically symmetric probe. To show the
type of results obtained it is sufficient to consider the one exponential
approximation, Eqn. 2.44, to the rotational diffusion correlation function
G,..(t). We can calculate the steady state polarization index rs,

‘rs = (Izz — Ix)(Izz + 212x) (4.46)
where
Iz — Ix = A2(Pp[62+ 3 A" A2 [ Gy, ()
+ (Gon(0) — Gon (&) 7unl (o + 7] (4.47)
I, + 21 = (1/3) + (2/3)"2A%%(P,) (4.48)

An equivalent expression is obtained for the strong collision model (cf. Eqn.
2.29).
In the special case that the emitting dipole is parallel to z, i.e. to the



219

molecular symmetry axis, while the absorption transition dipole makes an
angle 8 with z we have simply

Iz — Ix = (1/3XP» + (2/3)
X (P + [(1/5) + (2ITKPy) + (18/35XPyy — {P2)*] o0/ (700 + 7F )} Pa(cOs 8)
(4.49)

Iz + 2Ix = (1/3) + (2/3)XP>)Ps(cos 8) (4.50)

If, instead, the absorption transition moment is parallel to the molecular
axis while the emitting dipole makes an angle § with it we have

Inz — Lx = {(1/3XP» + (2/3)
X {(Poy? + [1/5+ (2/TX P2y + (18/35X Py — {Poy*] 700/ (00 + 7 )}} P2(cOs 8)

4.51)
and

Izz + 21 = 1/3+ (2/3XPy) (4.52)

Notice that a steady state experiment contains some limited information on
dynamics in the form of correlation times 7, or rather of ratios 7¢/7m,. This
information may prove rather difficult to extract since at every given
temperature we have a number of unknowns (order parameters and cor-
relation times) and only an experimental polarization value. The situation is
worsened by the fact that changing the temperature all the parameters do
in principle vary, including the fluorescence decay time s

4.2. Angular dependence experiments on monodomain samples

We wish to investigate here the possibility of studying the angular
dependence of fluorescence polarization as a means of increasing the
amount of experimental data, and thus allowing determination of order
parameters [91]. This should be of importance in extracting (P,) and even
more so to obtain (P,) when this determination is theoretically possible. The
geometry of the experiment is only slightly different from the one con-
sidered in §4.1 and is shown in Fig. 4.5.

We consider a monodomain sample at the origin of the coordinate frame.
Light linearly polarized along a unit vector e; and propagating along the Y
laboratory axis provides the required excitation of the fluorescent probe.
The emitted light is observed along the incidence direction through a
polarizer set at a direction e, Typically the incident polarization direction is
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Fig. 4.5. Geometry of angular dependence experiment.

chosen along Z, while in emission both parallel (I)) and perpendicular (I,)
components are measured. Intensities are recorded as a function of the angle 4
between the vertical and the sample director d. The experimental set up used to
actually perform the measurements depends on the type of sample we have at
hand. For nematic liquid crystals a modified microscope has been used [94],
where the aligned sample is rotated by using a rotating stage. In other
situations, e.g. if the sample is aligned by flow [95], it might be convenient to
simultaneously tilt the two polarizers in the excitation and emitted beam
instead of actually rotating the sample. In any case director rotations are here
restricted to the ZX plane. In other words for this experiment we consider
rotating the monodomain about the direction of propagation of the exciting
light (cf. Fig. 4.5). Thus

D%,(d — L)= D%,(0, 9, 0) (4.53a)
= dL(9) (4.53b)

where df,(9) is the usual notation for the small Wigner matrices defined in
the Appendix [25]. We are now in a position to see explicitly what the
predicted angular dependence for the experiment will be. To do this we first
couple the two Wigner rotation matrices containing the angular dependence
in Eqn. 4.10 using the Clebsch-Gordan series (Eqn. A12). The result is

If(t, 9) = 2 ()" E}™ Ef™ C(22J; m — m')C(22J ;9 — q) X
D700, 8, 0)* Gy(2) (4.54)
where C(abc; de) is a Clebsch—-Gordan coefficient [25]. The polarization
tensor components have been given before in Eqns. 4.184.21. The in-

tensities for various combinations of polarizer and analyzer can be obtained
in explicit form. The algebra required for obtaining this is rather lengthy,
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however, and the explicit expressions have been derived by perform-
ing the necessary algebraic manipulations on a computer, using the
SCHOONSCHIP algebra system [96]. The resulting intensity expressions
are relatively involved and will be reported elsewhere [91]. Here we show
instead a rather illuminating limiting case for steady state measurements.

We assume as usual a single exponential decay for the intrinsic fluores-
cence decay (Eqn. 4.45) although the theory can be generalized to the case
of more complex decays. We also consider the case of vertical excitation
while observation is either vertical (I(9)= Izz(9)) or horizontal (I.(%)=
Izx(19)). The probe molecule is once more assumed to be rod-like, with
transition moments parallel to the long axis, i.e. DPH-like. We adopt for the
theoretical calculations both the diffusional model and the strong collision
which we shall now consider in turn.

(A) Diffusion model: the first effect we wish to examine is that of the
influence of the orientational order parameter (P,) on the fluorescence
depolarization angular dependence pattern. Polar plots of our results are
shown in Fig. 4.6a—c for three different values of the fluorescence to
reorientational decay time ratio. Even though the general trend is similar,
there are marked differences between the various cases. Thus, for example,
if we choose low values of (P,), the I, curve lies inside the I curve for
fluorescence decay times much shorter than reorientation time. On the other
hand, this is not true if 7 is somewhat larger than D7

(B) Strong collision model: we now wish to investigate the effect that
changing (P,) has on the fluorescence intensities pattern. To this end the
so-called strong collision model is most conveniently used. In this case we do
not have to assume an anisotropic pseudopotential acting on the molecule to
start with since (P,) appears as an empirical adjustable parameter. The
orientational correlation functions in the strong collision model are assumed
to be single exponentials (cf. Eqn. 2.29). In this model every spherical
component of the transition tensor is assumed to decay with its own time 7,.
These orientational decay times are empirical parameters to be determined.
The model is therefore particularly convenient when only one or two
correlation times are needed, as is the case when both transition moments
are either parallel or perpendicular to the long axis. We have then con-
sidered a certain value of the order parameter (P;) and of the ratio of
fluorescence to reorientation time, and from these we have computed the
intensity patterns for various values of {P,). These results are shown in Fig.
4.7a—d.

Here we notice first of all that, if 7 > 7, (Fig. 4.7a), the effect of varying
{Py) on the curves is very limited. According to our results a value of
7r = 27 is sufficient to make the experiment very insensitive to (P,). This in
turn means that attempts to determining (P,) from fluorescence depolariza-
tion angular dependence experiments (and even more so from normal steady
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Fig. 4.6. The effect on the angular dependent fluorescence intensities Ii(3), I,(9) of varying the
order parameter (P;). A DPH like probe with transition moments paralle!l to the long axis is
considered. (P,) takes the values (A) 0.0, (B) 0.2, (C) 0.4, (D) 0.6, (E) 0.8. The three sets of polar
plots illustrate various ratios of fluorescence to reorientational decay times: (a) 7r = 0.01D7}; (b)
TF = 0.1D11; ©)1r = DII.

state experiments) are not likely to be successful or accurate. As we shall see
later on this has often been overlooked in the past.

A more interesting situation arises when 7 < 7. In this case the theoreti-
cal angular patterns are rather sensitive to the fourth rank order parameter.
In particular when (P;) goes from positive to negative values the pattern
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Fig. 4.7. The effect of changing the order parameter {P,) on the angular dependent fluorescence
intensities I(9), I.(9) for a DPH like probe according to the strong collision model. Here we
keep the order parameter (P,) fixed at 0.4 and consider four values of (Ps): (A) 0.1041 (Mean
Field value); (B) 0.05; (C) 0.00; (D) —0.1. Each set of polar patterns corresponds to a certain
ratio of fluorescence to reorientation decay time 75/79: (a) 5.0; (b) 1.0; (¢) 0.5; (d) 0.01.

changes from a four leaf to a cross shaped type. This is particularly apparent
when 7r < 7, as shown in Fig. 4.7d. In this limit we have, in particular, that
the I, pattern becomes a circle when (P,)=0. Using again a procedure
written in SCHOONSCHIP we can obtain explicit results for the intensities.
We find

I(®) = 1/5+ (=2/7+ 6 cos® 9/7) (P + (3/35— 6 cos? 8/7 + cos* FXPs)
(4.55a)
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I(8) = 1715+ (1/21XPy) + (—4/35 + cos? 3 — cos® 3K Py) (4.55b)

These equations show quite neatly that indeed the I, pattern becomes a
circle when (P,)=0. It is also easy to see how the pattern changes sym-
metrically with respect to the circle, when (P,) changes sign. In this case the
same numerical quantity is either added to or subtracted from the circle.
Needless to say this simple equation only holds when 77 < 7;. On the other
hand it is in this limit that the experiment is most sénsitive to (P,). This limit
could be achieved in practice using either probes with sub-nanosecond decay
time or rather viscous liquid crystals.

Another angular dependent experiment has been recently considered by
Kooyman et al. [92]. They considered homotropically aligned samples, with
the director perpendicular to the sample cell glass slides. In view of the
geometrical constraint on the director they chose to perform excitation with
radiation propagating at an angle ¢ to the bilayer normal. They then
performed an angular dependent study by varying this angle of incidence.
Their experimental set up will be particularly useful for studies on oriented
bilayers.

4.3. Macroscopically isotropic systems

We now turn to the case, especially relevant in biophysics [97-99] of
experiments performed on vesicles [7b, 8-19]. We first derive general model
independent equations for r(r) valid even for a non-cylindrically symmetric
probe. We shall then discuss the time-dependence expected for a cylindric-
ally symmetric probe reorienting according to one of the models previously
examined i.e. the diffusion and the strong collision model [19].

4.3.1. General relations

We start once more from Eqn. 4.10 or rather from a slight generalization
of this where we relax the assumption that the director is fixed in space.
Thus we have for the rank L, L’ contribution to the total intensity

155 ()= E-™ EF ™ AL» AL#”
(Drg(do— LY* Dig(di — LYD 5,0 — do)* Dig(t — d))) (4.56)
where the double angular brackets indicate an average over the local

director motion with respect to the laboratory frame and over the molecular
reorientation with respect to the director. For a vesicle we can assume these
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two motions to be uncoupled, i.e.

(Drg(do = LY* Drg(d, — LYDG(0 — do)* D5 — d,)))
=(Drg(do— LY*Dig(d: = LY&AD5(0 — d)* DE(t — d)) (4.57)

where (.. .); indicates an average over the local director motions and (. ..)
“an average over molecular reorientation with respect to the director; we
have removed the unnecessary subscripts in this last term. Here the local
director time-dependence in the laboratory frame is given by the overall
vesicle reorientation. For an ordinary vesicle with a diameter of a few
thousand nanometers, the overall tumbling time will be orders of magnitude
longer than the fluorescence decay time. Therefore we can safely assume at
this stage the director distribution to be static on the experimental time
scale. Due to macroscopic spherical symmetry this distribution will be
isotropic and we can write the average over the distribution of directors as

(Dhg(d = LY*D7%g(d = L))a = 811 8pmBgq/ (2L + 1) (4.58)
by exploiting the orthogonality of the Wigner rotation matrices (Eqn. A7).

After the macroscopic average has been taken we are left with only two
surviving components i.e.

1% =3 (4.59a)
and
12=1S EMEM G(r) (4.59b)
where
G(t) = 2 (D%(0 —~ d)* D2, (t — dPA*A>"" = S G, (1) (4.60)

and we have not yet made any assumption about the probe symmetry.

We see from Eqns. 4.5 and 4.59 that the geometrical information about
the experiment is all contained in the product E?™E?™', while G(¢) contains
all the molecular information. The various experimental geometries dis-
cussed in §4.1 are here all equivalent in principle. We find in fact

Ii() = Lz (t) = Ixx (t) = Iyy (2)
=5+ &GO @.61)
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and

I ()= Lx(t)= Ly (1) = Ixy (1)

s—15G() (4.62)

with Ii(t) = I;(t). We obtain therefore the time-dependent polarization ratio
as

r(0) = () = L)/ (1) + 21.(1)) (4.63)
=3G(1) (4.64)

Equation 4.64, together with the definitions 4.16, 4.60, constitutes a general
expression for r(r) as a sum of orientational correlation functions (D7,(0—
d)*D2.(t — d)). Another, perhaps more illuminating, expression can be
obtained from Eqn. 4.60 by changing the sense of the first rotation through
the relation DL (0—-d)*= DL(d—~0) and subsequently employing the
closure relation of the Wigner matrices (Eqn. A10) in the form

S Dki(d — 0)Dky(t — d) = D5,(: — 0) (4.65)
q

We can in this way evaluate the sum over g to obtain
r(t) =33 (D3ult — ) A>" A" (4.66)

Thus the polarization ratio depends only on the relative orientation cor-
relation function (D,,{t—0)). While the detailed form of the time-depen-
dence will be discussed later, we now wish to obtain some general results for
the short time and long time limiting values of r(t). From Eqn. 4.66 we find
the initial value of the polarization ratio as:

r(0)=373 8w AXA2"

=% Py(cos B..) (4.67)

where B, is the angle between the absorption and emission transition
dipoles. To go from Eqn. 4.66 to Eqn. 4.67 we have used the fact that the
rotation at time ¢ =0 is D?2,(0—0) = §,, and the explicit expression for the
A, A tensors spherical components (cf. Table Al). The result in Eqn. 4.67
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holds for molecules of arbitrary shape. The limiting plateau value of r(¢) for
very long times can also be written down explicitly as

)= 3( S (DA (S (DamA>) (4.68)

where (D2, is an order parameter for the probe as introduced in §2. Notice
that the equations given for r(t) and its boundary values are quite general as
up to this stage no assumption has been made about the symmetry of the
local environment or of the probe. Since we find that the initial value r(0) is
a constant, it follows that it cannot give any information on these sym-
metries. The long time limit is more informative and the general expression
in Eqn. 4.68 adopts simpler forms if some symmetry exists, since this reflects
on the order parameters {D32,) (cf. §2). Particularly important is the case of
local uniaxial symmetry. In this instance a rotation around the local director
cannot have any effect so that we must have

and long time value of the polarization anisotropy i.e. the plateau reduces to
r(eo) =1 A2  A200 4.70)

where the upper tilde denotes the partially averaged components familiar in
magnetic resonance studies [20], i.e.

A0 = S (D3yA2 4.71)

. Further simplifications require examining the probe symmetry as well. We
consider as an example biaxial molecules with point symmetry D, analo-
gous to that of the popular fluorescent probes anthracene and tetracene. It
was shown in Ref. 23 that for D,, molecular symmetry the order parameter
(D%, can be different from zero only for n = 0, %2 and that (D3,) = (D} ).
Thus for these lathe-like probes we find the plateau value of the polarization
ratio to be

r(®) = 1 A2(P,) + (2 Re A2 D},)A>(Py) + (2 Re A*?X D) 4.72)

where the usual notation (P,) has been used for (D%y). The order parameter
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(D%,) is a measure of the deviation from molecular cylindrical symmetry. As
discussed in §2.1.1 it has been treated theoretically using mean field theory
[32] and is currently measured by other physical techniques, for example,
NMR [42] and ESR [100]. The information obtained in a certain experiment
depends on the orientation of the absorption and emission dipoles in the
molecular system, chosen as usual as the principal axis system for the
ordering tensor and with the z axis as the axis of greatest symmetry. Results
for various transition moments orientations for biaxial particles are given in
Table 4.2,

Let us now examine the case of a probe with a cylindrically symmetric
ordering matrix. In this instance we find [23] (D32,) = §,08,P,). From Eqn.
4.68 we obtain the long-time limit as

r(eo) = 2 A20 A20(p,y? (4.73)

By transforming the absorption and emission tensors to their principal
frames we can rewrite Eqn. 4.73 as

r(®) =2 Py(cos B,)Px(cos B. X PsY? 4.74)

a result also obtained by Lipari and Szabo [17]. This is the limiting value of
the polarization for a probe with cylindrically symmetric ordering tensor and
absorption and emission moments at angles B,, B, respectively, from the

cylindrical symmetry axis L For a rod-like probe with u||f|ll such as an
idealized DPH [9]

r(®) =3 (P, 4.75)

Notice that this plateau value contains information on the second rank order
parameter (P,) as in the monodomain case (§4.1.1). Here however (P,) is
squared and the information about its sign is lost. This might make it more

TABLE 4.2

LONG TIME LIMITING VALUES OF THE FLUORESCENCE DEPOLARIZATION FOR
BIAXIAL PROBES {19]

Results are given for various values of the absorption (z) and emission (jz) transition moments
in the molecular frame in terms of the order parameters (D), (D).

Configuration r()

wllallz (2/5X Py

wllz, filx —(U/SKPY(P) — 6D}
ullx, @il (3/5}{(1/6X P2y — (D§)}

nllalx (1/100(P2Y* — 2(6)'X PXD%,) + & D)’}
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difficult to establish if the average orientation of a certain probe is parallel
or perpendicular to the bilayer normal (§2.1).

For molecules with u||@ll or mwigll such as perylene and other
aromatic hydrocarbons we have instead

r(®) = 15 (Py)* (4.76)

Our results for these two simple limiting cases agree with those published in
Ref. 9. However, even for the simplest case of cylindrical symmetry Eqn.
4.74 is more general than those given by Kinosita et al. [9]. In particular it is
interesting to note that in the long time limit the angles 8,, 8. between the
molecular axis [101] and each transition moment have to be known, and not
just the relative angle 8, between them as in the short time limit. Thus, for
example, if at least one of the two transition dipoles is at the so-called magic
angle, B = arc cos(1/3"%) ~ 54.7°, the angular term in Eqn. 4.74 vanishes and
the limiting value of the fluorescence polarization is predicted to be zero. If,
instead, the order parameter (P,) is known from some independent
measurement, information on the transition moments orientation in the
molecular frame can be gathered. This geometrical dependence might be of
help for example in locating the orientation of a chromophore attached to a
macromolecule. Alternatively it could be used to obtain insight into the
disposition of a certain intrinsic chromophore in a protein.

4.3.2. Dynamic effects
We shall examine in detail the case of a probe with effective cylindrical
symmetry. In this instance we can apply (cf. §2) the following symmetry
restriction on the orientational correlation functions
(D20~ dY*D2(t — d)) = 8, D% (0 — d)* D3n(t — d))
= 8 Gin(1) @4.77)

Thus we find from Eqns. 4.60 and 4.64
r()=3> A?A>" S G, (f) (4.78a)
n q
=13 AMA(DZ,(t - 0) (4.78b)

The time evolution of the polarization ratio is therefore given by the sum of
orientational correlation functions. The information content and physical
significance will be tackled systematically later on. Here we wish to discuss the
calculation of r(t) and make some comparison between the polarization decay
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in amonodomain sample [4] and in a membrane vesicle. We consider the usual
example of an elongated probe with transition moments parallel to the long
axis. We have seen earlier that

r(t) = {(P2 + 2Goo(1)}/(1 + 2(P2)) 4.79)

for a monodomain sample. Hence at least in principle, the Wigner cor-
relation function G(t) can be extracted from the time decay. A similar
experiment performed on a vesicle suspension would give instead

r(t) = $(D3(t - 0)) (4.80)

which is just a sum of orientational correlation functions as shown by Eqn.
4.78a. By employing the symmetry relations (Eqn. 2.25) valid for cylindri-
cally symmetric probes and mesophases, we can write for a DPH-like probe

r(t) = ${Gu(t) + 2Gio(t) + 2G(1)} (4.81)

The Wigner matrix correlation functions in Eqn. 4.78a are of course those for
a molecule reorienting in an anisotropic environment {4]. They can be
calculated using a specific reorientation model. We consider, as in the
previous sections, two cases.

(a) Diffusion model: in Fig. 4.8 we show, as an illustration, results for the
time-dependence of r(¢) obtained using a Maier-Saupe-like truncation (Eqn.
2.17). We note that the theoretical predictions are in excellent agreement
with the recent experimental findings of a number of authors [9, 10, 13-18]
using the DPH probe which very closely mimicks the idealized case of an
effectively cylindrically symmetric molecule with absorption and emission
moments parallel to the long axis. )

Notice that, as shown earlier, there is a limiting value r(e)# 0 as soon as
the local order parameter (P,) # 0. The true isotropic medium condition is
obtained for (P,)=0. In this limit the standard isotropic results [2] are
recovered. The diffusion model gives '

r(t)=3%exp (—6D.1) 4.82)

in the isotropic limit, with D, being the perpendicular component of the
rotational diffusion tensor. According to the diffusion model, the decay of
r(t) is not a simple exponential in an ordered system i.e. when (P,) # 0 even
when u, i are along the symmetry axis. This is perhaps most apparent if we
consider the approximate one exponential form of the Wigner correlation
G,.(2) which holds for degrees of order which are not too high (Eqn. 2.44).
Within this approximation we find
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-Fig. 4.8. The time-dependent polarization ratio r(¢) for an elongated cylindrically symmetric
probe. Solid curve for absorption and emission dipole moments parallel to the molecular axis,
dashed curve for transition moments tilted 20° off axis. Curves calculated according to the
diffusion model for (P») equal to (A, A’) 0.0, (B, B") 0.5, (C,C) 0.8.

Fig. 4.9. Theoretical r(t) for a perylene type probe in a vesicle calculated according to the
.diffusion model of reorientation (potential Eqn. 2.17). Here ulg Lz (cf. Fig. 3.3). The local
order parameter (P,) is respectively (A) 0.0, (B) —0.4.

Z an(t) = 2 an (0) cXp (_ t/an) - 8n()<P2>2 exp (_ t/T()()) + <P2>26n() (483)
q q

which when substituted in Eqn. 4.78a yields
r(t) = %2 AZ’"AZ,n‘{[an(O) - 8q08n0<P2)2] exp (_ t/an) + (P2>28n0} (4'84)

where the explicit values of the correlation function initial values G, (0)
have been given previously in terms of order parameters {(P,) and {P,) (cf.
Table 2.3). We can see that even if the transition moments are parallel to the
cylinder axis, i.e. if n =0 in Eqn. 4.84, a sum of three exponentials is
obtained. The dynamic information is contained, in general, in the cor-
relation times 7,,. In the diffusion model these time constants all follow from
the only dynamic input parameters for the calculation, i.e. from the diffusion
tensor components Dy, D,. As is apparent from the structure of the diffusion
matrix (Eqn. 2.38) no information on the ratio D/ D, can be obtained if both
the absorption and emission moment are parallel to the molecular symmetry
axis. The predicted decay appears as a sum of three exponentials. However it
would be dangerous to use an unconstrained three exponential fitting
procedure for an experimental curve since the three pre-exponential factors
and the three correlation times 7, are not independent.
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After substitution for G,,(0) we have the explicit expression

r(t) = 2/5X1/5 + 2/TXPy) + (18/35X Py — (Pp)%} exp (—t/1e0) + {Po)*
+ (2/5K1/5 + (1/TKXP2) — (12/35X Py} exp (—#/710)
+ (2/5K1/5 ~ /TKP2) + (3/35X Py} exp (— t/75) (4.85)

The parameters of the three exponentials are obtained simultaneously
from the solution of the diffusion equation when a model potential and a
value for D, are assumed. Thus if the Maier-Saupe-like potential (Eqn. 2.17)
is considered, the only independent parameters are (P,) and D,. The value
of (P,) can be read off from Fig. 2.5 and the three correlation times 7o, 71,
Ty are plotted in Ref. 50 as a function of (P,). As a practical consequence
the best way of analyzing experimental data is not to perform a fit to a sum
of exponentials but rather to choose a model potential and fit the hopefully
smaller number of parameters that the model involves. The decay curves for
r(t) are modified if the transition moments are tilted away from the
symmetry axis. As an illustration we show (dashed curve in Fig. 4.8) the
effect of a tilt of 20° for a DPH-like probe. Notice also that the steepness of
the decay depends on Dy/D, when the transition moments are off axis [19].

We now examine once more the case of a perylene-type probe. Consider
Ao ~ 430 nm so that ul|fi Lz. Working through some algebra we get from
Eqn. 4.78a the model independent expression

7(1) = 36 Goo(1) + 5[ Gio(1) + Gn(1)] +3 Gal1) + Gat) + Gt} (4.86)

We have evaluated this r(¢) using the diffusion model, as before, obtaining
the curves shown in Fig. 4.9. The other limiting geometry for the transition
moments i.e. plly, f&|x (cf. Fig. 3.3) yields

r(1) = 3t Goo(1) + 3[Gro(t) + Gao(1)] — 5 Gin(t) — Gra(t) — Gol£)} (4.87)
with
r(®) = i6(P>?

the same limiting value holding also for Eqn. 4.86.
Substituting the diffusional correlation functions gives the peculiar looking
pattern in Fig. 4.10. :
Notice that similar curves with a negative starting polarization have been
obtained experimentally by e.g. Brand et al. [84], for A, ~ 256 nm. Accord-
ing to our theoretical curves perylene does not seem to be a very sensitive
probe for local ordering in vesicles. Both configurations of transition
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Fig. 4.10. Predicted polarization anisotropy time variation r(t) for a perylene type probe with
wlly, fllx (cf. Fig. 3.3) in a vesicle. Simulation performed using the diffusional reorientation
model with potential Eqn. 2.17 and Dy/D, = 10. The various curves correspond to a local order
(Py of (A) 0.0, (B) —0.2, (C) —0.3, (D) —0.4.

Fig. 4.11. The effect of varying the rotational diffusion tensor anisotropy Dy/D, for a perylene
type probe with glly, @ljx in a vesicle. Here (P2} = —0.3 and Dy/D, is (A) 1, (B) 5, (C) 10.

moments yield very similar curves as (P,) goes from its isotropic value to
—0.4 (close to the limiting value of —0.5).

Perylene seems to be more sensitive on the other hand to variations in the
rotational anisotropy. We show in Fig. 4.11 the effect of varying Dy/D, from
I to 10 for a local {P,) = —0.3. Essentially the same pattern is obtained for an
isotropic solvent ({(Py) = 0).

(b) Strong collision model: a very simple and compact expression for the
polarization ratio can be obtained if the strong collision expression (Eqn. 2.29)
for the correlation functions G, (f) is used in Eqn. 4.78. In this instance,
since the correlation times 7, are assumed to depend only on n, the sum
upon g can be performed explicitly to give

> Gn(t) = (1 = (P2)*8n0) €xp (— 1/ 70) + {P2)*8p9 (4.88)

Hence, for an arbitrary orientation of the transition moments specified by
their components A>"A>" the strong collision expression for the polariza-
tion decay is

r(t)= %{2 AR AR (1 — (Py)28,0) exp (—t/7,) + A2’°AZ‘°'(P2)2} (4.89)

In this simple model we recall that each spherical tensor component
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reorients with its own time constant ,. The physical significance of 7, is that
of a correlation time relative to reorientation of the molecular z axis. If this
motion takes place much more slowly than that of the x and y axis, the
correlation time 7, relates essentially to reorientation about the molecular
symmetry axis (cf. Fig. 2.7). Here the expressions for r(t) are simpler than
the diffusional ones, but each different correlation time has to be considered
an independent parameter.

4.3.3. Continuous illumination experiments

As mentioned in §4.1.2 expressions for steady state intensities can be
obtained by integrating the corresponding time-dependent quantities (cf.
Eqn. 4.44). We find in general for cylindrically symmetric probes and local
uniaxial symmetry the depolarization ratio r;, as

re = (h— I)/(Iy+21,) (4.90)
thus
r,=13 > AZrAZR > f G, (t) exp (—t/7r) dt/ ¢ (4.91)
n q

which can be readily calculated for the two reorientation models considered
in §2.2.

(a) Diffusion model: using the expansion for G,,(¢) as a sum of exponen-
tials given in Eqn. 2.41 we find

ro=1 D A2 20 S (b TEN (7K + 7F) 4.92)

The expression can be simplified by retaining only the first terms of Eqn.
2.41. However, a simpler expression can be obtained using the strong
collision model.

(b) Strong collision model: here we make use of Eqn. 4.88 to obtain

=3 APAR(PY 41 AMAR (1 (PRS0l (7 + 76) 4.93)

This very simple equation holds for any orientation of the transition
moments in the molecular frame. It generalizes and shows the limit of
validity of similar expressions previously obtained by other authors [14, 15],
to which it reduces when |zl

1, = 4Py + 3(1 — (Py?)mo/ (0 + 7F) 4.94)
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In this special case, only the correlation time 7, relative to long axis
reorientation appears. For an elongated probe (P,) is positive and should
decrease with temperature so the polarization ratio is expected to decrease
with temperature. This is not necessarily the case if at least one of the
transition moments is off-axis. For instance if the absorption moment makes
an angle B, with the long axis (and the emission moment)

1, = 2 Py(cos B, X P2y + 2 Py(cos B,)(1 — (P 7o/ (To+ 7F) 4.95)

If the angle B, is greater than the magic angle, the polarization ratio will
be negative and will tend to zero from below as the temperature increases.
Notice that to observe more than one correlation time, and in particular the
correlation time 7, related mainly to reorientation about the long axis, a
probe with both moments off-axis is needed. For example, if both u, & are
perpendicular to the long axis and uz

= WP + {10 - (P o+ } (4.96)

T0+’TF '7'2+TF

For an elongated molecule it is expected that 7, <7, [19] and it should be
possible to estimate the importance of the term containing 7,. In any case,
the relative importance of the two contributions depends on the order. In
the limiting case of complete local order, (P,) = 1, only the 7, second term in
Eqn. 4.96 survives and '

o=+ fTF 4.97)
In physical terms this means that when the local order is complete, only
modulation of the fluorescence due to reorientation about the long axis is
possible. As we see there are a variety of expressions obtained for the
polarization anisotropy as the transition moments geometry varies. It is most
important that this is taken into account when analyzing experimental data.

5. Applications of fluorescence depolarization studies to membranes

There have been a great number of applications of the fluorescent probe
technique to the investigation of order and fluidity in model and real
membranes [7-17, 28-30, 47, 79, 83, 85, 101-106). It is now realized that
ordering is a structural property while fluidity is a dynamic concept. The
detailed properties of probes such as orientation of the transition moments,
cylindrical symmetry or not, fluorescence lifetimes and their temperature
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variations have, however, not been taken fully into account. We believe
these factors and the others discussed in detail to be important if proper
characterization of lipid bilayers is to be achieved, and that the time is now
ripe to use systematic theories of the type discussed in the previous section
for proper data analysis.

There is, on the other hand, a large amount of data available which has
given _insight into membranes and which can help. in planning future
experiments. Here we wish to review briefly some of this work. We
concentrate once more on the DPH probe, which we have used as an
example and which is the most used. We look first at model membranes then
at biological ones.

5.1. DPH in model membranes

As we discussed in §3, DPH has been widely studied as a highly sensitive
fluorescent probe of membrane fluidity, because it exhibits a number of
favourable structural and spectroscopic properties [79, 107]. In summary:

(a) Its high extinction coefficient and fluorescence quantum yield allow
the detection of a fluorescence signal even at very low concentrations (e.g.
1075 M).

(b) The well separated absorption and emission bands reduce the pos-
sibility of energy transfer between DPH molecules and facilitate the eli-
mination of excitation light scattering.

(c) DPH is chemically stable and, being strongly lipophilic, is practically
insoluble in water, while it is easily incorporated into membranes.

(d) Its rod-like shape causes it to align normally with the long axis parallel
to the lipid chains.

(e) Absorption and emission moments are approximatively parallel to
each other and to the long axis of the molecule, allowing the use of a simple
formalism in the interpretation of the experimental data. Moreover this
configuration of transition moments means high values of fluorescence
polarization anisotropy in the ordered phase, which is particularly useful
when trying to locate a phase transition e.g. in a membrane bilayer system.

It should be remembered, however, that DPH also shows some properties
which require care when performing experiments as well as in the inter-
pretation of the results:

(a) DPH partitions with a ratio one to one in the gel and liquid crystal
phase of the lipids [102]. This behaviour is useful in the correct detection of
the lipid transition temperature, but it implies that DPH can only give some
average value of the membrane properties in the presence of more or less
heterogeneous regions in the bilayer.

(b) The emission maxima of DPH are relatively insensitive to the type of
solvent used, thus ruling out the possibility of using it as a polarity probe.
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The absorption spectra are on the other hand sensitive to the solvent
polarity. These spectra must however be used with care, owing to the
difficulty of performing reliable absorption measurements in scattering
media such as membranes.

(c) The possibilities of some photochemical reactions involving DPH,
such as cis-trans isomerization or reactions with the solvent have been
mentioned: e.g. Shinitzky and Barenholz [79] reported a reversible decrease
of the DPH fluorescence in liposomes with the time of exposure to a light
source. Birch and Imhof [81] have also found a new absorption band
appearing in polar solvents at high energies. Furthermore DPH oxidation or
the formation of a covalent complex between DPH and a lipid oxidation
product has been reported [108] for the probe embedded in multilamellar
vesicles containing egg phosphatidylcholine. These counter-indications have
prompted a number of workers to investigate various DPH derivatives as
potential fluorescent probes with improved features [107, 108].

A problem of particular relevance when using fluorescent probes in
membranes is that of knowing the probe location in the bilayer, e.g. if it sits
in the hydrophilic region near to the polar heads, or if it is more or less
deeply buried in the hydrocarbon region. It is also very useful to know the
likely orientation of the probe with respect to the lipid chains. Observing
that the absorption spectrum of DPH in bilayers is similar to that in apolar
organic solvents, and considering the insolubility of DPH in water, many
authors [11, 102, 103, 110] agree that DPH is located in the hydrocarbon
region of the bilayer. Owing to the rod-like structure of DPH and by
analogy with oriented liquid crystals studies {67], the orientation of the DPH
long axis in membranes is believed to be parallel to that of the lipid chains
[9b, 111]. The time-dependent emission properties of DPH are thought to
reflect roughly the average molecular motion of the hydrocarbon chains
around DPH itself. The absorption spectrum of DPH does not change going
from the liquid crystal to the gel phase [102]. This suggests that DPH sits in
the apolar region of the membrane at the temperatures studied.

The theory discussed in the previous chapters relating fluorescence
anisotropies to order parameters and correlation functions assumes
depolarization to be caused by the probe reorientation. On the other hand
depolarization by radiative or non-radiative energy transfer or excimer
formation can occur at high probe concentrations. In order to avoid energy
transfer, a lipid-probe molar ratio of at least 10° has been recommended
[9b]. The analysis of the emission spectrum at probe concentration as high as
10~*M in cycloliexane does not show any evidence of excimer formation.

Since DPH is insoluble in water and only fluoresces when absorbed inside
the lipid bilayer its incorporation in membranes can be followed by measur-
ing the increase of the fluorescence intensity with time [102]. The uptake of
DPH by multilamellar liposomes is a more complex process than uptake by
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small vesicles. In multilamellar systems the fluorescence intensity is found in
fact to increase in a stepwise fashion [102]. This behaviour seems to indicate
that DPH penetrates the multi-layered structure of liposomes and not just
the outer layer.

The fluorescence lifetimes of DPH in various phospholipids bilayers range
between 7.5 and 11ns, depending on the temperature. They are ap-
proximately constant in the gel phase region and decrease with temperature
in the liquid-crystal phase. We have seen in §3 that in apolar isotropic
hydrocarbon solvents, e.g. mineral oil or liquid paraffin, the DPH fluores-
cence lifetime does not change with temperature, while it changes in polar
hydrocarbon solvents as glycerin or propylene glycol. This suggests that the
fluorescence lifetime of DPH depends both on the temperature and the
polarity of the medium. Unfortunately the lack of absorption spectroscopic
studies and of quantum yields data precludes the determination of the
radiative lifetimes of DPH in model membranes and the comparison with
data in organic solvents is difficult. It is interesting to note that DPH in
saturated fatty acids has, at the same temperature, higher fluorescence
lifetime values than in unsaturated ones. If polarity effects in the various
fatty acids are negligible, one may hypothesize that the higher order in
saturated fatty acids increases DPH fluorescence lifetime.

It has been reported [10, 112] that the decay of the total fluorescence
intensity of the DPH in vesicle systems cannot be adequately described as a
single exponential. The existence of two different sites in the membrane
interior, or a reversible excited state reaction have been invoked to explain
these data [10]. Chen et al. [10] also report that the fluorescence anisotropy
decay is not monoexponential and attribute this to the lack of cylindrical
symmetry for DPH. It might be worth re-examining this problem using a
theory like the one given in §4.

The role played by cholesterol in membranes has been studied for many
years using a variety of spectroscopic techniques [113-115]. In particular the
effect of cholesterol on fluorescence parameters of DPH in membrane lipids
has been investigated by a number of authors [9¢, 12, 13, 29, 116]. Choles-
terol is found to increase the order in the liquid-crystalline phase and to
decrease it in the gel phase. In contrast the molecular dynamics seem to be
almost unaffected. At high cholesterol concentrations (30-50%) the phase
transition becomes practically unobservable. The lifetime of DPH decreases
in the gel phase and increases in the liquid-crystalline phase in the presence
of cholesterol. This fact indicates that DPH experiences different environ-
ments in the two phases after cholesterol addition. The behaviour of the
fluorescence lifetime is very similar to that of the order parameter and
supports the hypothesis that the order may influence DPH fluorescence
lifetime. Johnson [117] has empirically found a linear relation between
lifetime and polarization for DPH in liposome or cell membranes. Other
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substances can, in principle, affect the fluorescence parameters of DPH in
membranes. They include proteins and glycerides. Of particular interest is
triolein, which does not affect the ability of cholesterol to suppress the phase
transition, but drastically reduces the fluorescence polarization values
[116, 117]. It is not clear, however, whether the order or the dynamics are
affected since time-dependent measurements have not been performed.

5.2. DPH in biological membranes

A knowledge of the ordering and motional properties of molecules
constituting biological membranes is important for an understanding of the
mechanism of various membrane functions as well as of the modifications
occurring in pathological transformations. In the previous sections we have
pointed out the importance of the local orientational anisotropy of mem-
branes in interpreting the fluorescence polarization properties of dissolved
probes. In biological membranes another fact to be taken into account is
that they have a heterogeneous structure and a complex biochemical com-
position, which includes different kinds of phospholipids, neutral lipids such
as cholesterol, glycolipids and proteins. It is obvious that if anisotropy
differences are found between normal and tumour cell membranes they
should be correlated with differences in biochemical composition. For this
purpose the precise location of the probe and the effect of each component
on the probe fluorescence ought to be known to limit the possibility of
misinterpretation. As an example DPH has been widely used in fluorescence
anisotropy studies of whole cells, assuming that it penetrates only in the
external plasma membranes. On the other hand Pagano et al. [118] have
shown, using an autoradiographic method, that DPH, when incubated with
intact lymphocytes or fibroplasts, locates itself not only inside the cell
surface membrane, but also in the cytoplasmic and nuclear regions of the
cell. It seems that DPH is principally located in the external membrane only
in erythrocytes. Bouchy et al. [119] have recently analyzed the evolution of
DPH fluorescence polarization following incubation in living cells. They
found a decrease of both r, and r. with the incubation time, a decrease that is
not present in isolated plasma membranes. They point out that the fluores-
cence parameters of DPH are characteristic of the plasma membranes at the
start of the incubation period. At long times, however, most of the fluores-
cence signal is due to DPH embedded in intracellular lipids which are in a
more fluid state than membrane lipids. It has also been suggested [120, 121]
that non-membrane lipid droplets, which may occur in the cell cytoplasm,
have a lowering effect on the apparent order parameters of intact cells.
These findings raise serious doubts about the validity of using probes as
DPH with intact cells, and suggest the convenience of working with isolated
membranes in such studies.
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Another point to take into account in membrane fluorescence studies, is
that we are dealing with aqueous suspensions which scatter light, possibly
with an attendant depolarization depending on the nature of the investigated
biological material [122]. A theoretical treatment of light scattering
depolarization has been given by Teale [123]. From a practical point of view
it is convenient to correct for the induced light scattering depolarization by
plotting r, as a function of the sample absorbance at the probe emission
wavelength. The true value of r, is recovered by extrapolating to zero
absorbance {117, 119, 122].

The spectroscopic properties of DPH in biological membranes are
influenced by their composition. Studies in protein-membrane model sys-
tems have shown that DPH fluorescence polarization varies as the amount
of protein in the bilayer changes, probably following order variations in the
membrane. This is in accord with microcalorimetric and ESR techniques
[124, 125]. Mely-Goubert and Freedman {126], however, suggest that the
high fluorescence polarization values of DPH in membranes might reflect to
a large extent interactions of the probe with proteins from the inner portions
of the cell. This position is in contrast with that of van Blitterswijk et al.
[120] who found no differences in polarization comparing isolated native
membranes with liposomes prepared from their lipid extracts. An exception
seems to be the human eye lens fibre membranes where they report an
appreciable protein contribution to the order parameters. Other authors
report a positive effect of proteins on DPH fluorescence polarization
[127,128]. This different behaviour may possibly depend on the type of
membrane, on the type and concentration of proteins, and also on the
position of the proteins in the bilayer. For instance Herreman et al. [128] has
found that the pH dependence of fluorescence polarization of DPH in
DMPC vesicles labelled with a-lactalbumin was related to the ability of the
protein to penetrate the bilayer at acidic pH. In order to obtain a positive
contribution of the proteins to fluorescence anisotropy, the probe should be
assumed to partition into highly structurally ordered regions of the lipid,
surrounding the apolar parts of membrane intrinsic proteins unless the
probe interacts directly with proteins. This fact is known to be true in model
lipid membranes [124]. The scattering of results in biological membranes,
however, suggests that more studies are needed in order to clarify the
question of the effect of proteins on DPH fluorescence polarization.

As mentioned earlier, the cholesterol effect on the fluorescence polariza-
tion of DPH has been widely studied in model membranes [9¢, 12, 13] both
in the gel and in the liquid crystalline phase. At room temperature biological
membranes are normally in the liquid-crystalline phase and the effect of
cholesterol is that of increasing the order of the membranes. In particular
Kinosita et al. [130] have explained the greater order in erythrocyte mem-

i
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branes with respect to sarcoplasmic reticulum membrane in terms of the
higher cholesterol content, as evidenced by the difference in the values of
the cone angle appearing in their model. The order parameter has also been
found to be directly related to the cholesterol content in a variety of
membranes from normal and tumour cells. Steady-state measurements also
show dramatic changes in fluorescence polarization of DPH inside the lipid
region of membranes belonging to normal and malignant cells. In particular
in leukaemic cell membranes a decrease in polarization has always been
found [131-133] on going from normal to lymphoma cells. It has been
suggested that the factor mainly determining these differences could be a
significant decrease in the molar ratio of cholesterol to phospholipids of the
leukaemic cells. These facts have suggested that fluorescence polarization
measurements could have a diagnostic and/or prognostic value [134]. The
validity of this has on the other hand been questioned by Johnson [117] by
investigating isolated plasma membranes. She found no difference between
the cholesterol-phospholipid ratio in normal and lymphoma cells, and ad-
vanced the hypothesis that the differences in the DPH fluorescence
parameters could be due to a variation of the glycerides in the plasma
membrane. It is interesting to note that in solid tumours fluorescence
polarization of DPH presents an opposite trend. In fact polarization and
order increase going from normal to tumour cell membrane [93, 116, 117,
120, 135].

The problem of quantitatively describing order and fluidity in biological
membranes is obviously of great interest, both from a fundamental and a
practical point of view [129]. The best way of obtaining this information
seems to be through time-dependent studies [130]. However the steady state
technique is still very widely used because of its simplicity and it is worth
investigating its information content in a real experimental situation. A
simple relationship has been proposed by Heyn [14] and Jahnig [15] linking
r, to (Py) for DPH in lipid vesicles. The relation is obtained employing a
strong collision-like expression for r, (cf. Eqn. 4.94) assuming a ratio of
fluorescence to reorientational decay time 7x/7, ~ 8, constant over the tem-
perature range considered. While this might be plausible in relatively fluid
lipid systems it is harder to justify, and generally incorrect, for biological
membranes. An empirical relation linking r, to (P,) for DPH has been put
forward by van Blitterswijk et al. [120]. The equation proposed might be
useful as a rough guide but it is hard to justify theoretically, at least in
applications to systems where the (P,) variation is due to T variation. A
tentative justification has been suggested based on the diffusion model
examined earlier [120]. There are, however, some problems with this, due to
the fact that the diffusion model predicts the polarization anisotropy decay
to be given by a sum of exponentials, rather than just one as in the strong
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collision-like models. Moreover the rotational diffusion coefficient itself
varies with temperature and this variation should somehow be taken into
account.

It should be stressed that proper analysis of continuous illumination data
is not straightforward in view of the number of unknown parameters
involved. To overcome this problem, we have developed a technique for the
analysis of the steady state polarization anisotropy ratio r,. This technique
has been applied in the investigation of cell membranes obtained from
normal and tumour cells with different growth rate, using DPH as
fluorescent probe [93]. According to the theory developed in §4.3.3 the
steady state polarization anisotropy for a rod-like molecule with transition
moments parallel to the long axis is

=" Z 2 (bqO)K/[l + (aqo)KDLTF] q= 0, il, +2 K= 1, 2, 3...
K
! G.1)

where D, is the component of the probe diffusion tensor perpendicular to
the long axis. It tells us how easy it is to reorient the long axis. 7r is the
fluorescence lifetime if we assume the fluorescence decay to be effectively
mono-exponential. We recall from the previous sections that the coefficients
(b®)x, (ag0)x are obtained from the solution of the diffusion Eqn. 2.36. They
are functions of the order parameter (P,) and can be calculated and
tabulated once and for all, given a certain potential. The theory predicts the
orientational correlation functions to be a sum of exponentials. In practice
we have retained the first five exponentials (labelled by K) which result from
a numerical solution of the diffusion equation according to the Nordio et al.
theory [50]. The input parameters needed to predict r, at a certain tem-
perature are 7, D, and (P,). Thus even if we are only interested in
extracting (P,) we have the problem of having more unknown than experi-
mental data since D,, 7+ and {(P,) vary with temperature. To remedy this
situation we have first of all measured 7= at a series of temperatures. The
intensity decays were found to be bi-exponential. For the sake of simplicity
the suggestion of Kinosita et al. [130] of assuming an effective average decay
time was followed. Then we have assumed a simple functional form for the
variation of both D, and (P,) with temperature. Thus we assume

D (T)= (Dy)r, exp [_ER (% - 71171>] ' 5.2)

i.e. an Arrhenius-type dependence, where T; is the highest experimental
temperature for a certain series and Eg a rotational activation energy. We
assumed moreover a quadratic dependence of (P») on T, i.e.
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TABLE 5.1

BEST FITTED VALUES FOR THE TEMPERATURE VARIATION OF (P;) AND D, AS
FROM EQNS. 5.2, 5.3 [93]

Sample T:(°C) Pdr, ax 102(°C_1) b X 104(°C2) (D)ry(ns™) Eg(kcal/mol)
Normal 52.0 0.074 042 0.26 0.13 541
9618A 51.4 0.120 0.36 1.59 0.10 42+1
H44 53.0 0.224 0.53 . 1.10 0.10 3.1+1
H3924A 522 0.488 0.22 0.42 0.11 46=*1

(P =(Pyr,+a(T,— T)+ b(T,— T) 5.3)

In biological membranes, as contrasted with pure lipid vesicles, the gel to
liquid crystal transition is not normally observable [98]. The order parameter
variation is thus assumed to be a smooth one [38]. With our assumption we
try to mimick (P,) vs. T above the virtual gel to liquid crystal transition.
Other functional forms for the (P,) vs. T curve can obviously be used in
other situations.

In any case, use of Eqns. 5.2 and 5.3 allows us to analyze a given set of r,
vs. T results using a limited number of parameters which we optimize via a
non-linear least squares fitting computer program. In particular we have
examined microsomal membranes from rat liver, Morris hepatomas 3924A
(fast growing), 44 (slow growing) and 9618A (very slow growing). Our results
for the parameters involved in the fitting are given in Table 5.1.

The differences found in fluorescence polarization of DPH in normal and
malignant cell membranes can provide, in our opinion, some insight in
tumour investigation, provided that experimental data are properly analyzed
and that variations in membrane composition are taken in due account.
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Appendix: Irreducible tensors and Wigner rotation matrices

A tensor of rank n is a quantity that transforms under rotation as the nth
direct power of a vector. The 3" dimensional representation of the rotation

group realized in this way can be decomposed into a set of irreducible
representations DV each of dimension (2L + 1). The matrix elements of the
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irreducible representation on a basis where the angular momentum operator J?
and its projection J, are diagonal with eigenstates |Lm}), can be written as
as

Dy, .(aBy) = (Lm|e~" e~#% e~""|Ln) (Al)

where a, B, vy are Euler angles defined according to the convention of Rose
[25]. The matrix elements D% ,(aBy) are called Wigner rotation matrices,
Wigner functions or generalized spherical harmonics. Combinations of
ordinary tensor components transforming according to the representation
D" are called irreducible tensor components of rank L and denoted by
T(L,m)’ e.g.

TEn = 3% DY (aBy) T (A2a)

T@Lm = 2 D{‘,.,,.(LYBY)* T&ny (A2b)

where the primed components refer to the rotated frame.

We have previously considered spherical irreducible tensors obtained
from a second rank tensor A direct product of two equal vectors i.e.
A=p®pu. Let us consider the slightly more general case of a tensor
T=a®b ie. the direct product of two possibly different vectors. The
explicit irreducible components of T are given in Table Al. Equation A2
illustrates the main reason for the usefulness of irreducible tensors in
. problems involving rotations, i.e. that their transformation properties are
very simple. The set of (2L + 1) components, T®, is called an irreducible
tensor of rank L. From Eqn. Al it is apparent that we can express
D7 .(aBy) as

Dia(aBy) = e ™ drn(B)e ™ (A3)

TABLE Al

IRREDUCIBLE SPHERICAL COMPONENTS 74" OF THE TENSOR T=a®b IN
TERMS OF THE CARTESIAN COMPONENTS OF THE VECTORS a, b

T = —(ab, + a)b, + a,b,)/3'"

T = —i(a,b, — a.b,)/2"?

TV = a,b, — a;b, * i(a,b, — a,b,)/2
T2'0 = (2/3)1/2{(1;1)1 - (axbx + a)’by)/z}
T2 = % {a,b, + a b, * i{agh, + a.b,))}/2
T**2 ={a,b, — ayb, * i(a:b, + a,b.)}/2
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The real quantities,
d%,.(B) = (Lm|e *5|Ln) (A4)

are called reduced or small Wigner matrices.

The functions DL, ,(aBy) constitute a complete orthogonal set spanning
the space of the angles «, 8, v. When one or two of the subscripts are zero
the Wigner rotation matrices reduce respectively to spherical harmonics or
Legendre polynomials.

D o(aB0) = {4m/QL+ 1} YT (Ba) (A5)

D{o(0B80) = do(B) = Pr(cos B) (A6)

where Y}, is a spherical harmonic and P, a Legendre polynomial. Some of
their properties, which we frequently use, are:

Orthogonality

27 2w

da j "singdp | dyDY(aPy)DY ()
= 81r28,,.,,,, Sun 51_,1_ /QL+1) (A7)

0

We also have the special cases

2” da J sin BdB Yim(aB)Y pmlaB)* = 811-8pmm (A8)
and
J: dp sin B Py (cos B)Py(cos B) =28, /QRL+ 1) (A9)

Closure: this allows coupling two successive rotations (a;8;y;) and (a,82y-)
to give a total rotation of (aBy) as

2 Dﬁ,n(alﬂl'}’l)Derm'(azﬁz)’z) = D{“n,m’(aﬁ')’) (A10)

Symmetry

Dy (@By) = (=)""D%y-n(aBy) = Din(=y — B~ a) (Al1)



246

TABLE A2
EXPLICIT EXPRESSIONS FOR THE SMALL WIGNER MATRICES d% ,(8) OF RANK
L=0,2

Here ¢ = cos(B/2) and s = sin(B/2).

L=0
dﬂ.n =1
L=2
d%vz = dzz_,z = 04
diy=—d* 1 =—di=—-d% _,=-2c%
diy=d%y=d}s= df_2=6"c2—6R2¢*
d3_ = —-d%,=—-d%a=d} .= 25
d%fz = daz_z = S4
d%] = d%l,vl = -3c2+4c¢*
dig=—d?0=—d} = d§_, = 6cs - 2(6'%)c’s

di-1=d? ;=3s?—4s*
djo=1-6c"+6c*

Products: the product of two Wigner rotations of rank L’ and L” with the
same argument can be rewritten as a linear combination of Wigner rotation
matrices of rank L according to the relation
, . L'+L"
Dy D= >, CWL'L'Lym'm"YC(L'L"L; n'n")D%, s o oo (A12)
L=|L'-L’"|

where C(abc; de) is a Clebsch-Gordan coefficient [25].
Integral of three Wigner rotation matrices: coupling two Wigner rotations as
in Eqn. A12 and using the orthogonality relation Eqn. A7, the following
useful integral can be obtained

f da sin B dB dy D:(aBy)D yolaBy)Dh o(aBy)
= 818 s mSnem e C(LL'L"; mm")C(LL'L"; nn")/QL" + 1) (A13)

We now give the explicit expressions for the Wigner rotation matrices
(and implicitly the order parameters i.e. their orientational averages). From
Eqn. A3 we see that what we really need are expressions for the small
matrices d% .(8). In Table A2 we give explicit expressions for the most
important cases L =0, 2.
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