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The molecular dynamics method has been used to study a model system 
of 1000 symmetric top particles placed at the sites of a cubic lattice and 
interacting with the pair potential Uij= - E ~ ~ P ~ ( c o s  pij). Here E i j  is a 
positive constant, E, for neighbouring sites and zero otherwise. The equations 
of motion are written in the quaternion representation and contact is made 
with the more familiar Euler parameterization of rotations. In particular, 
explicit expressions are given for the Wigner rotation matrices in terms of 
quaternions. The model is known from Monte Carlo simulations to possess 
an orientational phase transition and this fact is confirmed. Both static and 
dynamic properties have been calculated for a few selected temperatures. 
The singlet orientational distribution function has been obtained as a two 
dimensional histogram and order parameters (P,), (P,), (P,), have been 
calculated. It  is shown that the appropriate way to describe the orienta- 
tional dynamics in uniaxial systems of cylindrically symmetric particles is 
through the set of Wigner rotation matrix correlation functions +mnLL'(t) = 
(DmnL(0)*DmnL'(t)). Results for the +mnLL'(t) of ranks L, L'= 1, 2 are 
reported for two temperatures in the ordered phase and one in the isotropic 
phase. It  is pointed out that correlation functions such as (P,(l(Q) . I(t))) and 
(P2(1(0). l ( t ) ) >  depending solely on the angles between successive positions 
of the orientation vector I(t) only afford partial information on the dynamics, 
in contrast to the behaviour in isotropic systems. Although the model 
potential studied here is relatively simple the treatment is general and should 
be of use to future molecular dynamics simulations of anisotropic fluids. 

Computer simulations have contributed a great deal to our present insight of 
isotropic liquids [I, 21. The  impact of computer simulations on our understand- 
ing of anisotropic systems such as liquid crystals has been much smaller although 
reports of a few simulations have recently appeared [3-81. The  reasons for this 
situation are not difficult to understand. Liquid crystalline systems are ex- 
tremely complex being composed of relatively large organic molecules [9]. This 
complexity rules out at present the possibility of realistic simulations such as 
those performed on simple fluids and molten salts [I, 21. There is in fact no 
realistic intermolecular potential available for nematogenic molecules and even if 
such potentials were available the resulting simulation would probably be too 
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complicated for the capabilities of present computers. In  any case the first thing 
to attempt, before embarking on any extensive calculation, should be that of 
developing suitable algorithms for the computation of the relevant observables for 
the system. This is particularly true for models of liquid crystals because of the 
special problems connected with the existence of preferred directions in space. 
The  definition and determination of the orientational phase transition itself, that 
is of the main characteristic of liquid crystals, requires considerable care [3, 51. 
The  same is true for the definition and calculation of single and pair distribution 
functions describing the ordering in an anisotropic system [lo]. While some of 
these problems have already been dealt with or at least attacked in Monte Carlo 
investigations of nematic models a systematic approach to molecular dynamics 
simulation of anisotropic systems is still lacking. This seems a particularly 
severe limitation since it clearly leaves out the important reorientational properties 
of liquid crystals. We think it is important therefore to start by studying in detail 
some simple idealized model system which still contains the basic physics of the 
problem. Since we intend to concentrate on the most characteristic properties • 

of liquid crystals, i.e. on orientational properties, a natural candidate seems to be 
the lattice model already studied by Lebwohl and Lasher [3 (b)] and various other 
workers using the Monte Carlo method [3-51 as well as approximate theoretical 
techniques such as mean field and two site cluster or others [ll]. In  the spirit 
of this investigation we shall discuss problems concerning molecular dynamics 
simulations of liquid crystals as generally as possible within the context of our 
model. 

We describe only very briefly the lattice model employed since it is extensively 
discussed elsewhere [5]. I t  consists of a system of cylindrically symmetric 
particles or rather interaction centres located at the sites of a simple cubic lattice. 
The  particles interact through a pair potential 

uij = - E,~P~(COS Pij), (1) 

where eij is a positive constant, E, for neighbouring sites i and j and zero otherwise. 
The  angle P , .  gives the relative orientation of particles i and j. The  orientation 

%? 

of every partlcle can be written in general in terms of three Euler angles (spy) L 

[12] transforming the laboratory fixed frame into a molecule fixed frame. We 
generalize slightly the model assuming that every particle is a symmetric top 

+ 

rotor. Thus it is natural to assume as molecule fixed coordinate system the j 

principal axis system of the inertia tensor. This also defines the long molecular 
axis. 

For a system of symmetric top particles the equations of motion for every 
particle can be written in terms of Euler angles [5] as 

6. = ((B - A)cip cos /3 sin /3 + (A + B)p+ sin /3 + N ,  - N, cos P)/A sin2 P, (2 a )  

!=(-(A+B)oij sin P-Boi2 sin fl cos /3+NB)/A, (2 b )  
y = { - ( A + ~ ) 2 @ +  cos ps in  P + ( A - B  cos2 P)(A+B)@ sin /3 

+ (A + B cos2 P)Ny - (A + B) cos PN,)/A(A + B) sin2 p. (2 c) 

Here A = I, and B = I  ,, - I ,  where I  ,, , I ,  are the principal components of the 
inertia tensor for the rotor. The  quantities Nu, Np, N, represent Euler 
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components of the torque N produced on the rotor under consideration by all the 
others in the system. In  the molecular dynamics procedure new angles ( ~ $ 3 ~ )  
can be calculated from a knowledge of the old ones and the torques through 
integration of equations (2 a)-(2 c ) .  However it is apparent that equations 2 
lead easily to numerical problems. Thus it is seen that the sin P factor in the 
denominator causes the calculation to blow up every time approaches zero. 
This is a well known problem in molecular dynamics simulation of systems of 
particles interacting via an angular dependent potential and various solutions 
have been suggested [7 (c), 13, 141. 

In  a preliminary set of calculations [5] we have used one such method, sug- 
gested by Barojas et al. [13]. I t  consists of continuously monitoring the value of 
every angle and switching to a different auxiliary laboratory system when ,8 
approaches zero.. Evolution is then followed in the new laboratory system and 
the new calculated angles are subsequently transformed back to the original 
coordinate frame. The  method obviously works but, apart from being inelegant 
it is rather time consuming and at least in our case leads to non-conservation of 
energy of the order of 1 per cent in a run of about fivk thousand time steps. 

I n  the present set of calculations we followed therefore the suggestion by 
Evans [14] to parameterize orientations in terms of quaternions. Thus instead 
of three Euler angles (spy) we have four parameters u,, u,, u2, u, linked by 

I t  is apparent that equation (3)  is the equation of a sphere in a four dimensional 
space. The  orientation of a rigid body of any shape is represented by a point on 
this hypersphere. Similarly the reorientation of the body corresponds to a 
trajectory on the surface of this sphere. In  the special case of a linear molecule, a 
particle can be described in terms of two Euler or polar angles or alternatively in 
terms of three direction cosines. Its orientation can be described as a point on a 
three dimensional sphere of unit radius and its reorientation as a trajectory on the 
sphere. A similar representation can obviously be given, a posteriori, for the 
symmetry axis of a symmetric top particle. We show explicitly some typical 
trajectories for our system in the next section. From the point of view of 
simulations the main advantage of quaternions is that they eliminate completely 
the problem of accidental singularities in the solution of the Euler-Lagrange 
equations of motion for a body of arbitrary shape. Thus quaternions are very 
convenient from the numerical point of view and we found their introduction 
competitive also in respect of computer time, even though a fourth equation of 
motion has to be used. On the other hand Euler angles and quantities connected 
with that parameterization, such as Wigner rotation matrices etc. are invaluable 
in the formal theoretical description of anisotropic systems. Moreover, probably 
due to their long periods of neglect, literature on quaternions seems to be rather 
scarce. We consider it important therefore to make contact between the two 
formalisms and so we establish in the Appendix the relevant transformations 
from one parameterization to the other. 

The  intermolecular potential is easily written in terms of quaternions using 
the general transformations given in the Appendix. We find 
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are the components of the unit vector 1 defining the symmetry axis of particle i. 
The  torque acting on the ith particle becomes 

where the sum is restricted to nearest neighbours and qtbc is the 1,evi-Civita 
tensor [IS]. Summation is implied on repeated tensor indices not appearing on 
the left hand side. Torque components are calculated in the laboratory frame. 
They are then transformed to the principal system of the ith molecule employing 
the rotation matrix, M, given in equation (A 19) in terms of quaternions. New 
angular velocities are then-generated by integration of the body frame equations 

where I,,,, etc. are the principal components of the inertia tensor. Here we 
consider elongated particles or rather prolate symmetric tops with I ,, / I ,  = 0.2. 

In  the usual Euler angles formulation the numerical problem starts at the 
point when new velocities d ,  6,  9, and new angles a, /3, y have to be obtained 
through a possibly singular transformation. In  the quaternion formalism new 
orientations are instead generated in a straightforward manner by integrating, 
e.g. for the ith molecule, the equation 

Equation (8) is obtained in a way similar to that of Evans [14] by inverting the 
equation 

0 - -1 
i - 2'ijJi"jIMkl (9) 

for the components of the angular velocity vector in terms of the rotation matrix 
M components (cf. equation (A 19)). The numerical integration of equations 
(7) and (8) is performed using a fourth order Runge-Kutta-Gill procedure. 
Although slightly time consuming in comparison with other algorithms this 
method has some advantages, for example it is self starting and stable as discussed 
by Berne et al. [7 (c)]. Calculations were run on a system composed of 1000 
particles, i.e. a 10 x 10 x 10 lattice with periodic boundary conditions. 

As usual a molecular dynamics simulation can be divided into three stages : 
an equilibration, an evolution and production one and finally a third stage in 
which properties of interest are calculated. In  the first part of the calculation 
the system is started from a given point in phase space and it has to relax to 
equilibrium. In principle any starting state can be chosen. In  practice, since 
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the system can be followed only for a limited amount of time it is of great im- 
portance to consider the equilibration process in some detail. Since we are only 
interested in equilibrium dynamics the ideal starting state would be itself an 
equilibrium one. In  fact, initial angular velocities do not constitute a problem 
since they can be sampled from an equilibrium maxwellian distribution. For 
the orientations we used whenever possible an initial equilibrium orientational 
configuration taken from a previous Monte Carlo run [5]. On the other hand 
Monte Carlo configurations may not be always available and we have found 
starting from a random or a completely aligned configuration unsatisfactory in 
terms of the time needed to reach equilibrium. We have thus devised a simple 
alternative procedure to generate an initial configuration not too far from equili- 
brium. This consists of sampling orientations from a Maier-Saupe type 
distribution 

f(cos 18) =exp (t cos2 B)lZ, (10) 

where Z is a normalization constant. The  strength parameter 6 is chosen so 
that f(cos p) yields an approximate value of (P,) as obtained by interpolating the 
available Monte Carlo data. The  method can obviously be generalized for other 

and also applied to situations where Monte Carlo data are not available 
in order to produce approximate starting configurations. The  angle /3 in equa- 
tion (10) is the angle between the long molecular axis and the director. Thus 
sampling orientations from equation (10) implicitly defines a director along, say, 
the laboratory Z axis. Notice that if the starting configuration is obtained from a 
Monte Carlo run the director will not normally be found along 2. In  this case 
it is useful to transform from the laboratory frame to the director frame by 
employing the rotation matrix R that diagonalizes the ordering tensor for the 
chosen configuration. We shall come back to this point later when discussing 
some advantages of the molecular dynamics method. 

After choosing an approximately equilibrium initial configuration an 
equilibration stage followed. This was typically 3000 time steps, with every 
time step of length t*=0-005. We use throughout dimensionless time tX and 
temperature T* defined by 

t* = t(€/ (11) 

During this computational stage angular velocities were scaled every 50 time 
steps so as to reproduce the kinetic energy corresponding to the desired tempera- 
ture. The equilibration run is stopped when, after scaling, the continuously 
monitored temperature and order parameter fluctuate about an average value 
without noticeable drift. This is further checked in the following production 
stage. 

During production the system evolves without any further velocity scaling 
which would amount to placing it in contact with a thermal reservoir at the desired 
temperature. Therefore conditions are essentially microcanonical and energy 
and angular momentum are conserved, This has to be experimentally verified 
and it represents a test on the goodness of the integration of the equations of 
motion. By employing a time step of 0.0025 during the production run we 
obtain energy conservation to better than per cent over a run of 2500 steps. 
Similarly we find that the angular momentum J is conserved to better than 
in comparison with its initially chosen value of zero. 
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It is worth noticing that energy conservation (microcanonical conditions) 
leads for systems with only attractive forces like the present one to some con- 
sequences which may seem surprising at first. For example a fluctuation leading 
to an increase in temperature can also bring about an increase in order. T o  show 
that this is the case we consider the total energy E 

where the kinetic energy K is 
1 iv \ 

where n, is the number of degrees of freedom. The  potential energy (10) for 
the present lattice model is 

U = - ~NExu, ,  (I5) * 

where x = 6 is the number of nearest neighbours and a, is the short range order 
parameter defined [lo] as 

0 2  = <P,(COS P i j )  >, (16) * 

with Pij the relative orientation of two nearest neighbour molecules. Consider- 
ing the differential dE, which is seen to be zero from energy conservation i.e. 

yields 

since aE/aT is positive and aE/ao, is negative for our potential as long as the 
coupling constant E is greater than zero. What we have said applies to the short 
range order a, but we expect it to apply also to the normal long range order 
(P,) provided do,/d(P,) > 0, which could be the case below the transition. 
Fluctuations in our simulation runs seem to conform to these simple findings. 
During the production stage orientations and angular velocities were stored on 
magnetic tape for further analysis every two time steps of 0.0025. 

The  definition and calculation of the main observables as well as our results 
are introduced in the next sections. b 

The description of the relevant properties in a computer simulation of an 
anisotropic system as well as some of the techniques for their calculation have 
been described in detail elsewhere [5]. Single particle information is contained 
in an infinite set of orientational order parameters. These correspond to co- 
efficients in the expansion of the singlet distribution P(a, /3) in a Wigner rotation 
matrix basis set. For a system of uniaxial particles 
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where a and p are Euler angles 1121. The  molecular dynamics method presents 
some advantages over the Monte Carlo method for the calculation of static 
properties. This arises because the time scales for molecular and director 
reorientation are normally well separated ; in a real system separations are usually 
larger than 3-4 decades. This means that, since in molecular dynamics we 
follow the true evolution in time, we can prepare the system as described earlier 
with a certain director orientation and let it reach orientational equilibrium while 
preserving the average orientation. If molecular orientational equilibrium has 
characteristic times much shorter than director relaxation times we can then 
calculate static (and dynamic) properties considering the director as essentially 

Figure 1. A histogram of the singlet orientational distribution function P(a, x ) ,  x = 1 cos #I ( 
for the model potential in equation (1) as obtained by molecular dynamics simulation. 
Results shown for k T / ~ = 0 - 5 0  (A), 0.79 (B), 0.88 (C) and 1.30 (D). 
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fixed in space. On the contrary in the Monte Carlo method we do not sample 
equilibrium configurations sequentially in time but rather in a random way. 
Thus there is in .general no guarantee that the director orientation is conserved 
in the absence of an external constraint. A practical consequence of director 
conservation is that we can employ molecular dynamics to obtain the full singlet 
distribution P(a, /3) as a histogram. This experimental distribution is shown in 
figure 1 ( a )  to 1 (d)  for four temperatures ; three of these temperatures are below 
the orientational phase transition, i.e. TX = 0.50, 0.79, 0.88 and one above it, i.e. 
TX = 1.30. I t  is apparent that P(a,  P) is essentially independent of the angle a as 
expected. Above the transition, which is known to take place at about 
TX= 1.119 [3-51, isotropy is restored and all orientations become equally 
probable ; the histogram appears flat apart from statistical fluctuations. The  
singlet distribution P(a, /3) can obviously be employed to calculate order para- 
meters from the definition 

where P(K) is obtained by integrating P(a, K) with respect to a. In  view of the 
uniaxiality found we shall from now on consider only P(K). The  order para- 
meters of second, fourth and sixth rank obtained by this direct integration method 
are reported in table 1. The  second rank order parameter (P2) has also been 

Table 1. The orientational order parameters (P,), ( P , ) ,  (P,) at three temperatures Tk 
as obtained (a) by direct integration from the probability distribution P(a, K), 
K = cos ,!? stored as a 36 x 360 histogram and (b) the order parameter (P,) obtained 
by the diagonalization procedure. Production run of 3360 time steps. Also 
reported (c), for comparison, is the value of (P,) corresponding to (P,) ( b )  according 
to the Maier-Saupe theory. 

calculated using Vieillard-Baron's method [5]. This consists of calculating, in 
the course of the production run, the average of the second rank ordering tensor Q 

where E is the identity matrix. The  tensor Q is then diagonalized and the order 
parameter (P,) obtained from its largest eigenvalue A,,,,,, as [S] 

Results for (P,) obtained in this way are also reported in table 1. I t  is seen that 
the order parameters calculated in these two ways are in reasonable agreement. 
The  diagonalization procedure does not rely on a knowledge of director orienta- 
tion and so it is suitable for Monte Carlo calculations as well. I t  should be 



Molecular dynamics of a nematic 857 

noticed however that the generalization to calculation of higher rank order para- 
meters is not straightforward. Thus one advantage of the molecular dynamics 
method for anisotropic systems seems the possibility of obtaining higher rank 
order parameters in a simple way. 

The  description of single particle static orientational quantities can be 
effected in terms of the singlet orientational distribution P(Q) ,  Q=(aPy).  
Similarly the description of single particle orientational dynamics can be realized 
in terms of a joint probability distribution function P(QoO ; Qt). This gives the 
probability that the orientation of a particle is R, at time zero and R at time t.  
P(QoO ; a t )  can be expanded for t # 0 in a product basis set of Wigner functions : 

where the expansion coefficients are obtained as 

by using the orthogonality of the Wigner functions. Equation (23)  can be 
simplified using the methods described in [ l o ]  to take advantage of the symmetry 
of the mesophase and of the constituent particles. For a uniaxial mesophase a 
rotation about the Z axis, chosen to be along the director should leave P(R,O ; Rt) 
invariant. However, under such a rotation equation (23)  becomes 

R,(a)P(QOO ; Q t )  = C PLL',,n,mtn.(t) exp [ - ia(m - m')] 

x DmnL(i20)Dmfn~L'"(Q). (25)  

The required projection on the totally symmetric representation amounts to an 
integration over a. The requisite of invariance therefore yields 6,,,, in equation 
(25).  Similarly if the constituent particles are also cylindrically symmetric a 
rotation about the molecular symmetry axis should leave the distribution 
invariant and 6,,,, is obtained. For such a system 

P(QoO ; Qt)  = x ,* sn, (26)  

and the expansion coefficients are, apart from a numerical factor, the Wigner 
rotation matrix correlation functions 

dmnLL'(t) (DmnL"(QO)DmnL'(Q)). (2' ) 

These orientational correlation functions give therefore progressively more 
information about the joint orientational distribution of the system. Since it is 
fairly impractical to build and store a multi dimensional histogram of P(Q,O ; R t )  
the knowledge of the +,,LL'(t) provides us with a systematic approach to the 
orientational dynamics. In  fact only the orientational correlations of the lowest 
rank L = 1, L = 2 or their Fourier transforms will be required to interpret most 
experimental data. A notable exception is represented by neutron scattering, 
where in principle correlation functions of every rank can contribute. In  
figures 2-6 our results for the correlation functions of the Wigner rotation matrices 
are shown for three temperatures : two in the ordered phase (T"= 0.68, 0.95) 
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Figure 2. The first rank orientational correlation functions 

Qmnl1(t) = Re (Dmnl*(0)Dmnl(t) )/(Dmnl*(0)Dmnl(O)) 
versus time in reduced units for three temperatures T* equal to (A) 1.30, ( B )  0.95, 
( C )  0.68 ; (a)  -Qo0l1(t), ( b )  Ql1l1(t), ( c )  Qolll(t), ( d )  Qlol1(t) are shown. 

Figure 3. The second rank orientational correlation function 

@oo22(t> = <D002*(0)D00a(t) )1(D0O2*(0)D0O2(0)) 
versus reduced time t* for temperatures T* equal to (A) 1.30, ( B )  0.95, ( C )  0.68. 
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Figure 4. Second rank orientational correlation functions 

@ m n 2 2 ( t )  = Re (Dmn2*(0)Dmnz(t)>/<Dmn2*(~)~mn2(t)~ 
versus reduced time t* for temperatures T* equal to (A) 1.30, ( B )  0 . 9 5 ,  ( C )  0.68.  
Shown here are (a)  @ o 1 2 2 ( t ) ,  ( b )  @ 0 2 2 2 ( t ) ,  (c )  @ 1 0 2 2 ( t ) ,  ( d )  @ 2 0 2 2 ( t ) .  

and one in the isotropic phase ( T X  = 1.30). In  these figures we give the correla- 
tions (DmnLL'(t) normalized to a value of unity at time t X =  0, i.e. 

The  initial values of the correlation function $bmnLL'(t) can be calculated using the 
Clebsch-Gordan series. For a uniaxial probe and anisotropic phase we find 

where C(abc ; de) is a Clebsch-Gordan coefficient [12]. I n  practice we are 
interested in functions of rank L, L1= 1, 2 and the explicit expressions for these 
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Figure 5. The orientational correlation functions 

Qmn22(t) = Re (Dmn2'(0)Dmn2(t))/(Dmn2'(O)Dmn2(O)) 
(a) @1122(t), (b )  @1222(t), (c) @2122(t), (d) @2222(t) shown as a function of time in 
reduced units for T* equal to (A) 1.30, (23) 0.95, (C) 0.68. 

Figure 6. The mixed rank orientational correlation function 

@l112(o = Re (Dl11"(0)D112(t))l(D111'(0)D112(0)) 
shown for two temperatures in the ordered phase (B) 0.95 and (C) 0.68. 
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Table 2. Explicit expressions for the initial values of the Wigner rotation matrix correlation 
functions +q,jnLL'(O) = (DmflL* DnlnL') with L, L' = 1 ,  2 for cylindrically symmetric 
molecules and a uniaxial mesophase. 

are given in table 2. As we can see the initial values depend on the order 
parameter (P,) for the first rank correlation functions. However the second 
rank correlations starting values +1,,,22(0) depend on the fourth rank order 
parameter (P,) as well as on (P,). In  some experiments, e.g. in fluorescence 
depolarization stud;es, this dependence can be of value to extract the order 
parameter (P,) [16]. The  same could be done for the simulation results. 
Alternatively the relations in table 2 can be used to provide a check on the order 
parameters (P,) and (P,) previously determined. This is shown in table 3, 
where we give values for +lttnLL'(0) obtained from the correlation function calcu- 
lation and compare them with the values in brackets obtained through the 
expressions in table 2 and the order parameters in table 1. The  agreement is . 
seen to be satisfactory. 

The  Wigner matrix correlation functions needed to describe the orientational 
dynamics of anisotropic systems are, to a given rank, many more than those 
required for isotropic fluids. More importantly the correlations at a given time 
are not just a function of the angle between the two orientations at time zero and 
time t ,  but depend on the starting orientation R, as well. T o  discuss the differ- 
ences and similarities with isotropic systems, we obtain first the equivalent of 
equation (26) for such systems by imposing the additional requirement of 
rotational invariance. Under a rotation R(i1') of the laboratory frame equation 
(23) becomes 
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Table 3. Initial values of the Wigner correlation functions +mnLL' at three temperatures as 
obtained directly from the correlation function compared with the value obtained 
from the order parameter < P 2 )  and <P,) extracted from the histograms and the 
expressions in table 2 (in brackets). 

Projection onto the invariant representation is obtained by integrating over 
d R'/8rr2, which gives 

P(RoO ; Rt)  = C PLL'mn,m.n*(2L + 1)-l  SLL~Smm*Sqq*DqnL(Qo)DQ*n*L"(R), ( 3 1  a )  

The sum over q can be performed using the closure property of the Wigner 
functions to give 

P(R0O ; a t )  = C P n n ~ ~ ( t ) D n n ' ~ " ( Q , ~ ) ,  (32) 
where R, is the angle between orientation at time zero and time t  

PnnnL(t) = (2L + 1 ) ( D n n 9 L ( t ) ) / 6 4 ~ 4 ,  (33)  
while for a symmetric top Snn8 appears in equation (31).  We see therefore that 
there are two main consequences of a phase being spherically symmetric. One 
is that only relative orientations R ,  matter ; for linear or symmetric top molecules 
the relevant orientational correlations are just (Do, l (R,)) ,  (Doo2(Rto))  etc. or 
in a perhaps more familiar notation (P,(1(0) . l ( t ) ) ) ,  etc. [7]. The second is that 
mixed rank correlations are forbidden in the isotropic phase. The same is not 
necessarily true in the ordered phase. In figure 6 we show the mixed rank 
correlation function Ql1l2(t) as calculated for the present simulation. The order 
parameters themselves could be considered as mixed rank correlations between 
Wigner rotation matrices of rank zero and of a certain rank. Thus for rank L 

where as usual we have assumed cylindrically symmetric particles and a uniaxial 
mesophase. Obviously (DmnL) is time independent since DooO(Ro) is just a 
constant. 
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We do not wish to enter at this stage into the problem of establishing what 
sort of reorientational model [17-191 describes best the set of orientational 
correlations in figures 2-6. However, it is worth pointing out that the present 
correlation functions, obtained for a simple anisotropic potential should constitute 
an interesting test case for theories of reorientation. On the time scale of our 
experiment the two most popular models of reorientation, i.e. the strong collision 
and the diffusional both seem inadequate. They are in fact unable to predict, 
e.g. the vanishing of the first order time derivative of the correlation functions at 
time zero and the oscillatory behaviour observed. 

T o  elucidate some qualitative aspects of the reorientation problem as well as 
an aid in verifying the expectations from current models of motion or possibly in 
suggesting new ones [20] a motion picture of the dynamical evolution of the 
system has been made [21]. The  graphics package developed [21 (a)] allows 
us to show for example a set of spherocylinders whose trajectory has been 

Figure 7 (a). 
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obtained from the molecular dynamics simulation. More simply but perhaps less 
effectively, we can visualize the evolution of one particle by following the trajec- 
tory of the point defining the orientation on the tangent sphere. By projecting 
this trajectory onto the laboratory ZX plane we have in essence a record of the 
motion of the long axis of the particle. We have done this for several tempera- 
tures and for 500 particles. A subset of 25 of these trajectories is shown in 
figures 7 (a)-7 ( c )  for the same three temperatures : TX = 0.68, TX = 0.95 and 
TX= 1-30 at which results for the orientational correlation functions were 
previously calculated. As is apparent from these figures we find that in the 
ordered phase (at the temperatures studied) reorientation of the long axis is 
confined essentially to the pole of the sphere where the particle started to be 
oherved. That is, during the observation time, end to end reorientation of the 
long axis is fairly unlikely, for our system. 

Motion on a cone about the director direction, represented as horizontal lines 
in our ZX view are instead fairly common. While very little statistics can be 

Figure 7 (b) .  
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Figure 7 (c). 

Figure 7. Trajectories of the point representing the orientation of a particle's long axis on 
the tangent sphere. The director is along Z (vertical) and the ZX view is shown. 
Results are given for 25 particles out of 1000 and for temperatures TX of (a) 1.30, 
(b) 0.95, (c )  0.68. The last two temperatures are in the ordered phase, the first in the 
isotropic phase. 

extracted from such a limited number of particles as shown in figure 7 we may 
remark that these constitute a typical sample of what we observe for our 500 
plotted trajectories. I t  is of interest to note that the visualization method pro- 
posed in figures 7 (a)-7 ( c )  affords a simple way of deciding if the whole sample is a 
monodomain or if instead local structure is present, with the director fluctuating 
from one point of the sample to the other. In  other situations, with external 
constraints present, it can allow a check of their effectiveness in influencing the 
director orientation. In  our simulations we have found a monodomain structure 
in the ordered phase. I n  the isotropic phase no director is present ; from a 
dynamic point of view the motion is quite free and most of the particles 
explore the whole of the tangent sphere during the observation time. This is 
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1 
Figure 8. Correlation function C,,(t) = (w ,(O) - w ,(t)>/(w ,(0) - o,(O)) of the angular 

velocity component perpendicular to the mqlecular symmetry axis. Curves corres- 
pond to reduced temperatures (A) 1.30, (B) 0.95, (C) 0.68. 

after all quite reasonable since constraints upon the motion come only from the 
anisotropic'potential in equation (1). Thus the motion seems to be fairly inertial as 
long as the'strength of the anisotropic potential is not such as to produce a strong 
hindrance to rotation [IS]. To  investigate this we can examine the correlation 
function C"I(t) of the component of the angular velocity perpendicular to the 
molecular symmetry axis, shown in figure 8. In the isotropic phase the angular 
velocity correlation CWl(t) decays on a time scale similar to that of the various 
orientational correlations QmnLL'(t). However, in the ordered phase the orien- 
tational correlation function QoO1l(t), which depends only on the long axis 
reorientation, decays on a time scale very much longer than that of CUl(t) .  The 
behaviour of the second Legendre polynomial correlation function (Doo22(t), 
although apparently similar to that of (DoO1l(t) is in actual fact qualitatively 
different since the infinite time limit of ~$, ,~~( t )  is not zero but the square of the 
second rank order parameter. The other correlation functions QmnLL(t) do not 
have very different time scales in the isotropic and nematic phase, which is quite 
reasonable since they depend not only on the Euler angle P describing long axis 
reorientation but also on the other Euler angles which vary quite freely for our 
potential. 

Calculations were performed on the CDC7600 at CINECA (Bologna). We 
are grateful to Ing. E. Corda and Dr. M. E. Ronohi for their collaboration. 
We wish to thank Dr. P. Pasini for his help with various aspects of the com- 
putation. C.Z. acknowledges support from C.N.R. (Italy) and wishes to thank 
Dr. F. Jorgensen for reading the Appendix and Professor G. R. Luckhurst for a 
critical discussion of the whole manuscript during a visit made possible by a 
NATO research grant. 

APPENDIX 
A quaternion q is a four component quantity, [14, 221 
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where q,, i=O, 1, 2, 3 are real numbers and the basis components el, e,, e, obey 
the combination rule 

eiei = - aii + eiikek. (A 2) 

Since we are interested in making contact with the Euler type description of 
rotations it is useful to understand that a representation of quaternions can be 
realized in terms of the Pauli spin matrices a,, a2, 0,. Thus if we define the 
basis {e) as 

el = - zo,, e, = - za,, e3 = - ZU,, (A 3)  

it is seen that the multiplication law (A 2) is obtained. One of the reasons for 
our particular interest in quaternions is that they constitute, according to the 
Frobenius theorem [IS], the only algebra, together with real numbers and com- 
plex numbers, where every non-null element has an inverse ; this is just 

q-I = q"/qq4. (A 4) 
1 

I I t  is easily verified using equations (A 1-A 2) or directly from the Pauli matrices 
that the product of two quaternions 

% q = a + b - e  and q 1 = a ' + b ' . e  
can be written as 

(A 5) 

qq' = (aa' - b b') + [ab' + a'b + (b A b')] . e, 

where a vector notation has been used for compactness. 
We now wish to show the connection between rotation operators and quater- 

nions. We start by writing the operator for a right handed rotation of an angle 6 
about an axis n as [12] 

R,(6) = exp ( - i6n J),  (A 6) 

where is J the angular momentum operator. By choosing a spinor represen- 
tation, J =a12 and using the isomorphism (A 3), the rotation operator can be 
rewritten in terms of the quaternion basis {e) as 

R,,(6) = exp (i n . e). 

This shows at once that rotations can be described in terms of quaternions. 
Using equation (A 5) and the power series for sin and cos it is easy to show that 
the generalized Euler formula 

exp (An e) = cos X + (n e)  sin A (A 8) 

holds. Thus we can also write 
9. 6 

R,(6) = cos - + (n . e)  sin - 
2 2' 

Clearly this is still a quaternion, u, say, thus 

where u, = cos (6/2), u, = n, sin (9/2), u, = n, sin (6/2), u, = n, sin (612). This 
shows that quaternions lend themselves naturally to describe a rotation in terms 
of half angles of rotation and the components of the rotation axis. 
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We now wish to obtain expressions for 9 and n in terms of Rose's definition 
of Euler angles. This can be done in a number of ways. We choose to start 
from the rotation operator in terms of laboratory fixed angular momentum 
operators. We then use again the J = 012 representation ; thus 

B ~ ( a ~ ~ ) = e x ~ ( - i ~ o ~ ) e x ~ ( - i ~ o ~ ) e x ~ ( - i ~ o ~ ) ,  ( A l l )  

in terms of the quaternion basis. Using repeatedly the generalized Euler formula 
we find 

R(+y) = uo + u e, (A 1 3 )  
with 

P a+Y 
Uo = cos - cos - 

2 2 ' 

P 6 - 7  u2 = sin - cos - 
2 2 ' 

/3 . a + y  u3 = cos - sin -. 
2 2 

The  rank 4 representation Wigner rotation matrix takes the explicit form 

We can now couple D1I2 to obtain Dl in terms of quaternions, 

Dm,,' = C C($+l ; q - ( 1  ; p, " -p)D*,,  112 0 1 1 2  
rn-q, n-11' (A 16) 

We find 

Taking the transpose of Dl and transforming from the spherical to the cartesian 
representation we can also determine the explicit form for the cartesian rotation 
matrix M(a/3y) connecting a vector v in the rotated (primed) and original frame 

v' = M(a/3y)v. ( A  18) 
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The matrix is 

(uO2 - u~~ + u12 - u ~ ~ )  2(u0u3 + ' l " 2 )  - 2(u0u2 - '1'3) 

2(u1u2 - uo",) (uO2 - ~3~ + u22 - u12) 2(uOU1 + upu3) . (A 19) 

~ ( U O U Z  + ~ 1 ~ 3 )  - 2(u0u1 - u2u3) (uO2 + ~3~ - u12 - ~ 2 ~ )  

An explicit f o rm for  higher rank Wigner rotation matrices in te rms  of quaternions 
can be  obtained by repeatedly coupling Dl using the  Clebsch-Gordan series. 
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